The Micro Origins of International Business Cycle Comovement¹

Julian di Giovanni¹ Andrei A. Levchenko² Isabelle Mejean³

¹Universitat Pompeu Fabra, Barcelona GSE, CREI, CEPR

²University of Michigan, NBER, CEPR

³CREST Ecole Polytechnique, UNiversit Paris-Saclay and CEPR

Séminaire Fourgeaud, Juin 2017

¹This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC-2016-StG, Project No 714597 and ERC-2016-COG, Project No 726168)

International Business Cycle Comovement and Trade

- Frankel and Rose (1998), repeatedly confirmed since then
- Comovement also correlated with multinational linkages (Kleinert et al, 2015)

International Business Cycle Comovement and Trade

- Key unresolved questions:
 - transmission through linkages or common shocks? (Imbs, 2004)
 - micro-underpinnings of the relationship? "Trade-comovement puzzle," (Kose and Yi, 2006, Johnson, 2014)

The Role of Firms

- The micro origins of aggregate fluctuations
 - Gabaix (2011): skewness of firm-size distribution and idiosyncratic shocks ("granularity")
 - Acemoglu et al. (2012): input-output linkages and networks
 - di Giovanni et al. (2014): empirical evidence of micro shocks driving aggregate volatility
- How important are firms' international linkages in explaining international comovement?
- Which linkages play the greatest role?

This Paper

- A firm-level view of international business cycle comovement
- Census of French firms, 1993–2007
 - Value added/sales
 - Bilateral import, export, and multinational linkages
- Documents the importance of directly connected firms for aggregate activity and international comovements:
 - 1. Estimates the impact of direct connectedness on firm-level correlation with foreign GDP
 - 2. Aggregates up to establish whether the firm-level changes in correlation amount to an effect on business cycle comovement
- Main results: Directly connected firms represent less than 10% of French firms, 56% of aggregate value added and about 70% of international comovements

Related Literature

- IRBC and International Comovements
 - Empirical: Frankel and Rose (1998), Imbs (2004), Clark and van Wincoop (2001), Kalemli-Ozcan et al. (2001), Morgan et al. (2004), Imbs (2006), Kalemli-Ozcan et al. (2013)...
 - Theory: BKK (1995), Burstein et al. (2008), Arkolakis and Ramanarayanan (2009), Ghironi and Melitz (2005), Alessandria and Choi (2007), Kose and Yi (2006), Johnson (2014)
- Literature on micro origins of macro fluctuations
 - Gabaix (2011), Acemoglu et al. (2012), di Giovanni and Levchenko (2012), Carvalho and Gabaix (2013), Carvalho and Grassi (2015), di Giovanni et al (2014), Atalay (2014)
- Business cycle comovement at the firm level
 - Kleinert, Martin, and Toubal (2015), Kurz and Senses (2015), Cravino and Levchenko (2016), Boehm, Flaaen, and Pandalai-Nayar (2015)

Data Description

- Merge three large datasets:
 - Fiscal administration: firm tax forms from FICUS/FARE: value added, sales
 - Customs: partner-country exports and imports
 - Liaisons Financieres Database: multinational ownership
- Study comovement with 10 of France's largest trading partners over 1993–2007
 - Replace Switzerland with Brazil to include another major non-European trading partner

Bilateral Correlations: Our Data vs. Standard Sources

Summary Statistics for Whole Economy

	No.		Value Added		
	firms	Mean	Median	Share in total	
All Firms	998,531	1,165	211	1.00	
Importers	189,863	3,516	515	0.72	
Exporters	200,775	3,219	477	0.71	
Affiliates of foreign multinationals	30,654	7,061	1,335	0.25	
Firms with foreign affiliates	1,786	65,829	2,279	0.14	

Notes: valued added is reported in thousands of euros. Importers/exporters account for 93% of manufacturing value added.

Connectedness By Country

	Directly Connected			Not Directly Connected				
Country	No.	Combined	Mean	No.	Combined	Mean		
	firms	share	$\rho(\gamma_{\mathrm{ft}},\gamma_{\mathcal{C}t})$	firms	share	$\rho(\gamma_{ft}, \gamma_{\mathcal{C}t})$		
Belgium	113,472	0.626	0.047	853,812	0.374	0.007		
Brazil	19,962	0.385	-0.013	947,322	0.615	-0.035		
China	46,930	0.489	-0.064	920,354	0.511	-0.066		
Germany	108,657	0.627	0.039	858,627	0.373	-0.006		
Italy	105,522	0.607	0.065	861,762	0.393	0.027		
Japan	39,500	0.478	-0.042	927,784	0.522	-0.059		
Netherlands	82,369	0.590	0.065	884,915	0.410	0.013		
Spain	93,180	0.586	0.029	874,104	0.414	0.001		
United Kingdom	84,373	0.604	0.046	882,911	0.396	0.021		
United States	80,826	0.604	0.063	886,458	0.396	0.044		
Average	77,479	0.560	0.024	889,805	0.440	-0.005		

"Conceptual Framework"

• Correlation between France and country C:

$$\rho\left(\gamma_{Ft}, \gamma_{Ct}\right) = \frac{\mathsf{Cov}\left(\gamma_{Ft}, \gamma_{Ct}\right)}{\sigma_F \sigma_C} \tag{1}$$

Aggregate growth rate:

$$\gamma_{Ft} = \sum_{f} w_{ft-1} \gamma_{ft} \tag{2}$$

Focus on the intensive margin (88% of aggregate comovements) • Extensive Margin

• Plugging (2) into (1), aggregate correlation can be written as:

$$\rho\left(\gamma_{Ft}, \gamma_{Ct}\right) = \sum_{f} w_{ft-1} \frac{\sigma_f}{\sigma_F} \rho\left(\gamma_{ft}, \gamma_{Ct}\right) \tag{3}$$

Micro Evidence I

Estimation equation

$$\rho\left(\gamma_{ft}, \gamma_{\mathcal{C}t}\right) = \beta \mathsf{DIRECT}_{f,\mathcal{C}} + \delta_f + \delta_{\mathcal{C}} + \eta_{f,\mathcal{C}}$$

where

$$\mathsf{DIRECT}_{f,\mathcal{C}} = \begin{bmatrix} EX_{f,\mathcal{C}} & IM_{f,\mathcal{C}} & AFF_{f,\mathcal{C}} & HQ_{f,\mathcal{C}} \end{bmatrix}$$

- Refine the interpretation of macro results
 - \$\beta\$ Comovements through the transmission of shocks (Frankel and Rose, 1998)
 - δ_C Connected countries are more similar, thus subject to common shocks (Imbs, 2004)
- (Augmented specification: Accounts for indirect international connections through IO linkages)

Main Estimation Results

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Baseline	Baseline	Baseline	Baseline	Baseline	Sales	MFG
Dep. Var: $\rho(\gamma_{ft}, \gamma_{Ct})$							
Importer	0.029^{a}	0.025^{a}	0.013 ^a	0.013^{a}	0.012^{a}	0.018 ^a	0.011^{a}
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Exporter	0.035^{a}	0.020^{a}	0.005^{a}	0.005^{a}	0.006 ^a	0.011^{a}	0.005^{a}
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)
French Multinational	0.023^{b}	0.021^{b}	0.009	0.009	0.009	0.017^{c}	0.002
	(0.009)	(0.009)	(0.008)	(0.008)	(0.008)	(0.008)	(0.013)
Affiliate of a Foreign MNE	0.028 ^a	0.028^{a}	0.010^{a}	0.010^{a}	0.009^{a}	0.014 ^a	0.011^{a}
	(0.003)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.004)
Observations	8,363,760	8,363,760	8,363,760	8,363,440	8,363,750	8,928,330	1,234,760
Adjusted R ²	0.001	0.281	0.287	0.288	0.289	0.285	0.285
Firm FE	No	Yes	Yes	Yes	Yes	Yes	Yes
Country FE	No	No	Yes	No	No	Yes	Yes
Country×Region FE	No	No	No	Yes	No	No	No
Country×Sector FE	No	No	No	No	Yes	No	No
# of Xing links	403,180	403,180	403,180	403,092	403,180	418,915	202,454
# of Ming links	573,347	573,347	573,347	573,222	573,347	593,338	216,471
# of Affiliates	25,385	25,385	25,385	25,382	25,385	27,786	7,115
# of HQ links	3,046	3,046	3,046	3,043	3,046	3,626	815
# of Firm FEs		836,376	836,376	836,344	836,375	892,833	123,476
# of Country FEs			10			10	10
# of Country×Region FEs				960			
# of Country×Sector FEs					1,090		

• (Somewhat weaker) evidence of a positive impact of indirect connections

From Micro to Macro

1. Contribution of directly connected firms

$$\rho\left(\gamma_{At}, \gamma_{Ct}\right) = \frac{\sigma_{I_C}}{\sigma_A} \rho\left(\sum_{f \in I_C} w_{ft-1} \gamma_{ft}, \gamma_{Ct}\right) + \frac{\sigma_{I_C^c}}{\sigma_A} \rho\left(\sum_{f \in I_C^c} w_{ft-1} \gamma_{ft}, \gamma_{Ct}\right)$$

Aggregate Contribution of Directly Connected Firms

Country	Average ρ_A	Direct	Indirect
	(observed)	component	component
Belgium	0.758	0.519	0.239
Brazil	-0.269	-0.191	-0.078
China	-0.545	-0.370	-0.175
Germany	0.643	0.396	0.247
ltaly	0.630	0.399	0.232
Japan	-0.183	-0.163	-0.021
Netherlands	0.618	0.425	0.193
Spain	0.876	0.543	0.332
United Kingdom	0.010	0.078	-0.069
United States	0.372	0.317	0.055
Average	0.291	0.195	0.096
NB: Manufacturir	ng		
Average	0.484	0.408	0.076

From Micro to Macro

1. Contribution of directly connected firms

$$\rho\left(\gamma_{At}, \gamma_{Ct}\right) = \frac{\sigma_{I_C}}{\sigma_A} \rho\left(\sum_{f \in I_C} w_{ft-1} \gamma_{ft}, \gamma_{Ct}\right) + \frac{\sigma_{I_C^c}}{\sigma_A} \rho\left(\sum_{f \in I_C^c} w_{ft-1} \gamma_{ft}, \gamma_{Ct}\right)$$

2. Change in the aggregate correlation

$$\widehat{\Delta\rho}\left(\gamma_{At},\gamma_{Ct}\right) = \sum_{f} w_{ft-1} \frac{\sigma_f}{\sigma_A} \widehat{\Delta\rho}\left(\gamma_{ft},\gamma_{Ct}\right)$$

with

$$\begin{array}{lcl} \widehat{\Delta\rho}\left(\gamma_{\mathit{ft}},\gamma_{\mathcal{C}t}\right) & = & -\widehat{\beta}_{1}\mathbb{1}\left(\mathsf{EX}_{\mathit{f},\mathcal{C}}=1\right) - \widehat{\beta}_{2}\mathbb{1}\left(\mathsf{IM}_{\mathit{f},\mathcal{C}}=1\right) \\ & & -\widehat{\beta}_{3}\mathbb{1}\left(\mathsf{AFF}_{\mathit{f},\mathcal{C}}=1\right) - \widehat{\beta}_{4}\mathbb{1}\left(\mathsf{HQ}_{\mathit{f},\mathcal{C}}=1\right) \end{array}$$

Aggregate Effects of Closing the Economy

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
		Tota	l Change	Seve	er Trade	Seve	er MNEs	Equa	l Weights
Country	ρ_A	$\Delta \rho_A$	$s.e.(\Delta \rho_A)$						
Belgium	0.758	-0.112	0.016	-0.105	0.010	-0.007	0.013	-0.035	0.002
Brazil	-0.269	-0.053	0.011	-0.049	0.006	-0.004	0.009	-0.005	0.000
China	-0.545	-0.079	0.015	-0.075	0.007	-0.005	0.013	-0.014	0.001
Germany	0.643	-0.117	0.019	-0.106	0.010	-0.011	0.016	-0.035	0.002
Italy	0.630	-0.110	0.019	-0.101	0.010	-0.009	0.016	-0.033	0.002
Japan	-0.183	-0.077	0.011	-0.073	0.008	-0.004	0.009	-0.011	0.001
Netherlands	0.618	-0.105	0.014	-0.095	0.009	-0.010	0.011	-0.025	0.002
Spain	0.876	-0.103	0.019	-0.095	0.009	-0.008	0.017	-0.028	0.002
United Kingdom	0.010	-0.111	0.019	-0.099	0.009	-0.012	0.016	-0.027	0.002
United States	0.372	-0.117	0.019	-0.101	0.010	-0.016	0.016	-0.025	0.002
Average	0.291	-0.098		-0.090		-0.009		-0.024	
NB: Manufacturing									
Average	0.484	-0.103		-0.099		-0.004		-0.040	

Aggregate Effects of Closing the Economy

Zooming in: the top 100 Firms

Share of the top 100 in aggregate:	
Value added Exports	0.219
Imports	0.183
Value added of foreign MNEs' affiliates	0.152
Value added of firms with foreign affiliates	0.828

The Importance of the Directly Connected Firms

-				
	Tol	p 100	Non-	Top 100
	Directly	Not directly	Directly	Not directly
Country	connected	connected	connected	connected
Belgium	0.915	0.085	0.544	0.456
Brazil	0.780	0.220	0.272	0.728
China	0.901	0.099	0.372	0.628
Germany	0.915	0.085	0.545	0.455
Italy	0.918	0.082	0.519	0.481
Japan	0.904	0.096	0.357	0.643
Netherlands	0.912	0.088	0.498	0.502
Spain	0.898	0.102	0.498	0.502
United Kingdom	0.933	0.067	0.511	0.489
United States	0.967	0.033	0.501	0.499
Average	0.904	0.096	0.4617	0.538

Numbers of Markets Served

- Contribute significantly to aggregate comovements
- Create a "common component" between many of France's partners

Conclusion

- Comovement from micro to macro
- At the micro level, firms that are linked to a foreign country comove more with that country
- At the macro level, they are important in the aggregate French economy
- Potential for a substantial aggregate effect
- Aggregate effect is even stronger if indirect connections through IO are taken into account
- Still don't understand: general equilibrium effects; types of shocks being transmitted...

Intensive and Extensive Margins

$$\begin{split} \tilde{\gamma}_{At} &\approx \ln \sum_{f \in I_t} x_{ft} - \ln \sum_{f \in I_{t-1}} x_{ft-1} \\ &= \ln \frac{\sum_{f \in I_{t/t-1}} x_{ft}}{\sum_{f \in I_{t/t-1}} x_{ft-1}} - \left(\ln \frac{\sum_{f \in I_{t/t-1}} x_{ft}}{\sum_{f \in I_t} x_{ft}} - \ln \frac{\sum_{f \in I_{t/t-1}} x_{ft-1}}{\sum_{f \in I_{t-1}} x_{ft-1}} \right) \\ &= \underbrace{\gamma_{At}}_{Intensive \ margin} - \underbrace{\ln \frac{\pi_{t,t}}{\pi_{t,t-1}}}_{Extensive \ margin} \end{split}$$

Focus mostly on the intensive margin | Back to framework

Correlation Decomposition: Intensive and Extensive Margins

Using:

$$\tilde{\gamma}_{At} = \gamma_{At} - \ln \frac{\pi_{t,t}}{\pi_{t,t-1}}$$

it comes:

$$\rho\left(\tilde{\gamma}_{At}, \gamma_{\mathcal{C}t}\right) = \frac{\sigma_{A}}{\tilde{\sigma}_{A}}\rho\left(\gamma_{At}, \gamma_{\mathcal{C}t}\right) + \frac{\sigma_{\pi}}{\tilde{\sigma}_{A}}\rho\left(\ln\frac{\pi_{t,t}}{\pi_{t,t-1}}, \gamma_{\mathcal{C}t}\right)$$

◆ Back to framework

Bilateral Correlations: Extensive and Intensive Margins

