The Analytics of the Greek Crisis

Gourinchas, Philippon, Vayanos

Berkeley, NYU, LSE, NBER & CEPR

November 08 2016, LSE Hellenic Observatory

The Greek Depression

 In 2007, Greek GDP per capita was around \$35,000 and the unemployment rate was 8.4%.

 In 2014, Greek GDP per capita was around \$25,000 and the unemployment rate was 26.6%

What happened?

An 'Interim Report'

- Empirical investigation: Was Greece really that bad?
 - Yes!
 - Much worse than emerging market sudden stops
 - · Even for 'strict peggers'
- Model-Based investigation: Why?
 - Because Greece caught an EM disease with AE leverage ratios
 - What would have helped?
 - Less leverage
 - Banking union
 - Fiscal discipline
 - More flexible prices

Three Interlinked Crises (at least)

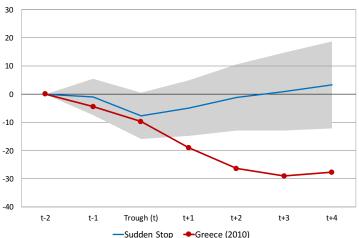
- A sovereign debt crisis
 - Rapidly deteriorating fiscal accounts
 - Greek sovereign debt appears increasingly unsustainable
 - Default in 2012.
- A banking crisis
 - Boom in credit to the private non financial sector peaks in 2008-09
 - Increasing projected losses on their assets
 - Investors question Greek banks solvency.
 - Multiple rounds of resolution & recapitalization
- A sudden stop
 - Large & persistent current account deficits
 - After the GFC, foreign investors unwilling to lend to government, banks, firms
 - Startling development for a currency union (Ingram (1973))
- All three crises linked (doom loops)

Literature

- Empirical literature on Crises
 - Calvo et al (2006), Dornbusch & Werner (1994), Gourinchas et al (2001), Gourinchas & Obstfeld (2012), Kaminsky & Reinhart (1999), Korinek & Mendoza (2014), Ranciere et al (2008)...
- DSGE literature and estimation
 - Galì and Monacelli (2008), lacovello (2015), Mendoza (2010)...
 - An & Schorfheide (2007)...
- Analysis of the Eurozone & Greek crises
 - de Grauwe (2013), Martin & Philippon (2016), Shambaugh (2012)...

Benchmarking: the Comparison Group

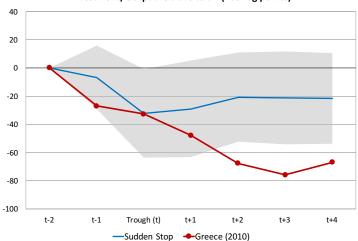
- Sudden Stops
 - Combination of capital flow reversal & large drop in domestic output
 - Extend Calvo et al (2006), Korinek & Mendoza (2013)
 - 49 sudden stops
- Sovereign Defaults
 - from Gourinchas & Obstfeld (2012) based on literature
 - · default on domestic or external debt
 - 65 default episodes
- Lending booms/busts
 - defined as in Gourinchas et al (2001)
 - deviation of credit/output from trend
 - 114 boom/busts


The Incidence of Crises

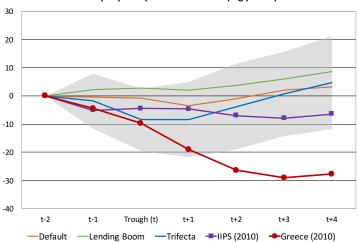
	Sudden Stop	Defaults	Credit Booms	'Trifecta'	#
ΑE	13	Greece	18	Greece	22
EM	36	64	96	9	57
Total	49	65	114	10	79

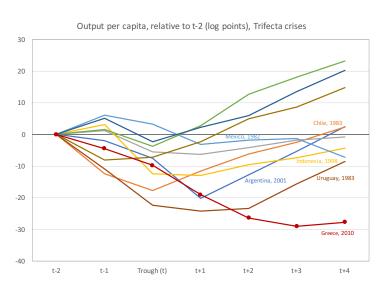
Benchmarking Ia: GDP Relative to All Sudden Stops

Collapse of 25%

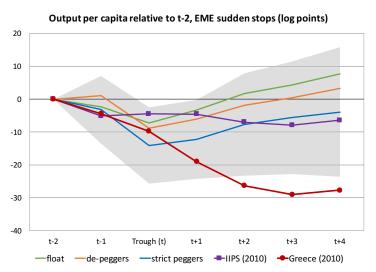


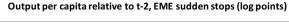
Benchmarking Ia: Aggregate Domestic Investment/Output

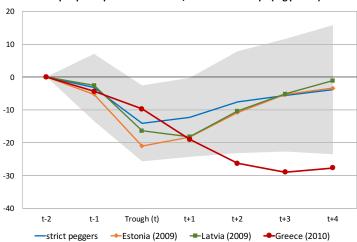

Collapse of 50%



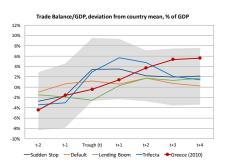
Benchmarking Ib: Other Crises

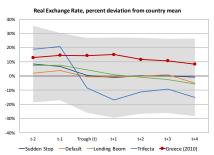



Sovereign Default? Credit Bust?... Trifecta



Benchmarking Ic: Compared to EM Floaters & Peggers




Benchmarking Id: Endogenous Peg?

External Adjustment

Empirical Lessons

- Greek crisis significantly more severe persistent and backloaded than typical sudden stop
- Greek crisis significantly more severe persistent and backloaded than 'Trifecta' episodes
- 3. Greek crisis more severe than for peggers (even Estonia or Latvia)
- 4. Collapse in aggregate investment unprecedented in its persistence and magnitude
- 5. Adjustment in external balances was very gradual, despite any significant movement in RER

Model

- Small Open Economy in a currency union $(r, \pi^F \text{exogenous})$
- Standard NK DSGE à la Galì (2011) with financial frictions
 - Government (B^g, T, G, r^g)
 - Banks (V, r^d)
 - Households (B^h, C, r^h)
 - Firms (I, K, r^k)
- Various shocks

$$\zeta_t^\# = \rho^\# \zeta_{t-1}^\# + \sigma^\# \varepsilon_t^\#$$

Government

Budget constraint

$$\frac{B_t^g}{R_t^g} + \tau_t Y_t = G_t + T_t + \frac{B_{t-1}^g}{\Pi_t^H}$$

Fiscal rule (spending and social transfers)

$$g_t = F_l g_{t-1} - F_n n_t - F_r r_t^g - F_b b_t^g + \zeta_t^{spend}$$

Tax rate

$$au_t = ar{ au} + oldsymbol{\zeta}_t^{ ax}$$

• Government funding cost $(x \equiv \ln(x/x_{ss}), d_t^g \equiv expected losses)$

$$\begin{aligned}
r_t^g &= r_t + d_t^g \\
d_t^g &= \bar{d}_g \frac{B^g}{Y} \left(b_t^g - \mathbb{E}_t \left[y_{t+1} \right] - \mathbb{E}_t \left[\pi_{t+1}^h \right] + \zeta_t^{dg} \right)
\end{aligned}$$

Households

$$U^{i} = \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta_{i}^{t} \left(\frac{\left(\mathbf{C}_{t}^{i}\right)^{1-\gamma}}{1-\gamma} - \frac{\left(N_{t}^{i}\right)^{1+\phi}}{1+\varphi} \right) \quad ; \quad \mathbf{C}_{t}^{i} \equiv \left[(1-\varpi)^{\frac{1}{\varepsilon_{h}}} C_{H,t}^{i\frac{\varepsilon_{h}-1}{\varepsilon_{h}}} + \varpi^{\frac{1}{\varepsilon_{h}}} C_{F,t}^{i\frac{\varepsilon_{h}-1}{\varepsilon_{h}}} \right]^{\frac{\varepsilon_{h}-1}{\varepsilon_{h}-1}}$$

• Borrowers, β_b (mass χ), $d^p \equiv realized$ loss rate, $B_t^h \leq \bar{B}_t^h$,

$$\begin{split} \mathsf{P}_{t}\mathsf{C}_{t}^{b} &= (1 - \tau_{t}) \, W_{t} N_{t}^{b} + \frac{P_{H,t} B_{t}^{h}}{R_{t}^{h}} - \left(1 - d_{t}^{p}\right) P_{H,t-1} B_{t-1}^{h} + P_{H,t} \, T_{t}^{b} \\ d_{t}^{p} &= -\bar{d}_{y} y_{t} + \bar{d}_{b} b_{t}^{h} + \zeta_{t}^{def} \\ \bar{b}_{t}^{h} &= \psi_{bh} \bar{b}_{t-1}^{h} - \xi^{bh} r_{t}^{d} + \zeta_{t}^{bh} \end{split}$$

• Savers, $\beta > \beta_b$ (mass $1 - \chi$),

$$\mathbf{P}_{t}\mathbf{C}_{t}^{s} = (1 - \tau_{t}) W_{t} N_{t}^{s} + \tilde{R}_{t} P_{H,t-1} S_{t-1} - P_{H,t} S_{t} + P_{H,t} T_{t}^{s}$$

Non-Financial Firms

- Break down into capital- and goods-producing firms.
- Capital-producing firms:
 - Convert consumption goods into capital, and rent to goods-producing firms.
 - Q rule for investment.
- Goods-producing firms:
 - Convert capital and labor into goods.
 - Cobb-Douglas with constant TFP.
 - Financing friction: pay part of wage bill in advance. Intraperiod loan with funding cost r^k .

Price and Wage Rigidity

Wage-calvo process yields a Phillips curve for wages

$$\pi_t^w = \beta \mathbb{E}_t \pi_{t+1}^w - \lambda_w (w_t - \gamma c_t - \varphi n_t) + \zeta_t^w$$

Price-calvo process yields a Phillips curve for domestic prices

$$\pi_t^h = eta \mathbb{E}_t \pi_{t+1}^h + \lambda_{
m p} \mathtt{mc}_t + rac{\zeta_t^{\pi h}}{t},$$

where mc_t is log real marginal cost in terms of domestic goods.

• ζ_t^w : wage markup shock, $\zeta_t^{\pi h}$: domestic price markup shock

Banks

- Domestic deposits and foreign loans
- Lend to households, firms and government
- Subject to capital requirement

$$V_t \ge \kappa \left(\frac{B_t^k}{R_t^k} + \frac{B_t^h}{R_t^h} \right)$$

where V_t is franchise value.

- No capital requirement for sovereign exposure
- Bank funding costs

$$r_t^d = r_t + \frac{\zeta_t^r}{\zeta_t^r} + \xi^d L \mathbb{E}_t \left[d_{t+1}^p \right]$$

Summary of Funding Costs

- Key equations
 - Banks fund households and firms

$$r_t^k = r_t^d$$

Banks: sudden stop and capital loss

$$r_t^d = r_t + \zeta_t^r + \xi^d L \mathbb{E}_t \left[d_{t+1}^p \right]$$

$$d_t^p = -\bar{d}_y y_t + \bar{d}_b b_{t-1} + \zeta_t^{def}$$

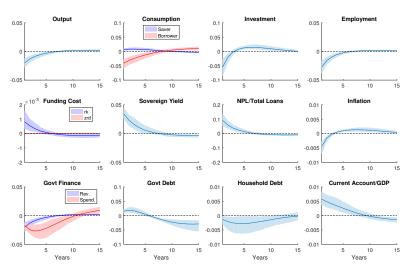
Government

$$r_t^g = r_t + d_t^g$$

$$d_t^g = \bar{d}_g \frac{B^g}{Y} \left(b_t^g - \mathbb{E}_t [y_{t+1}] - \mathbb{E}_t \left[\pi_{t+1}^h \right] + \zeta_t^{dg} \right)$$

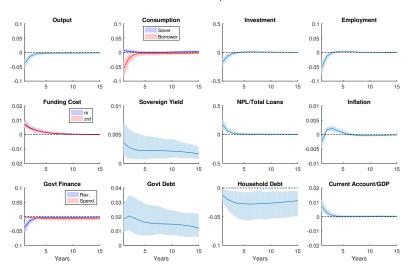
Households

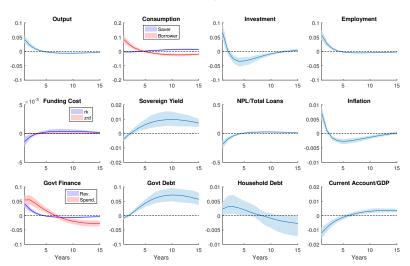
$$r_t^h = r_t^d + \mathbb{E}_t \left[d_{t+1}^p \right]$$


Doom Loops

No direct doom loop, but indirect GE feedback loops:

- Sovereign risk shock ζ_t^{dg} :
 - Government funding costs increase → Government raises taxes and reduces expenditure → Output declines → Expected costs of default on private-sector loans increase → Funding costs for private sector increase and investment drops.
- Sudden stop ζ_t^r :
 - Funding costs for private sector increase → Output and investment drop → Fiscal revenues drop → Expected costs of default on sovereign loans increase → Government funding costs increase.


Impulse Response: Sovereign Risk Shock


Impulse Response: Sudden Stop

Sudden Stop

Impulse Response: Fiscal Shock

Bayesian Estimation of the Model

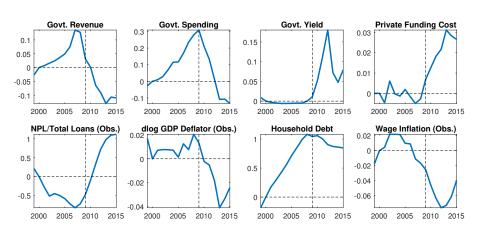
- Standard techniques (Herbst & Schorfheide (2015))
- Period: 1999 to 2015
- Calibrate steady state parameters
- Estimate dynamic parameters

Observable	Description	Shock	Shock Description
$G_t + T_t$	Government spending	ζ_t^{spend}	Govt. spending shock
$\tau_t Y_t$	Government revenues	ζ_t^{tax}	Tax rate shock
R_t^g	Greek government spread over EZ average	ζ_t^{dg}	Sovereign risk shock
R_t^k	SME spread over EZ average	ζ^r_t	Funding cost shock
$\exp\left(d_t^p\right)$	Non-performing loans/total loans, $def = npl$	ζ^{def}	Private default shock
Π_t	Greece CPI - EZ CPI	$\zeta^{\pi h}$	PPI cost push shock
B_t^h	Household debt	ζ_t^{bh}	Household credit shock
Π_t^w	Greek Wage Inflation - EZ Wage Inflation	ζ^w	Wage inflation shock

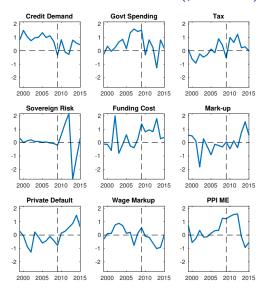
Table: Observables and Shocks

Calibrated Parameters-I

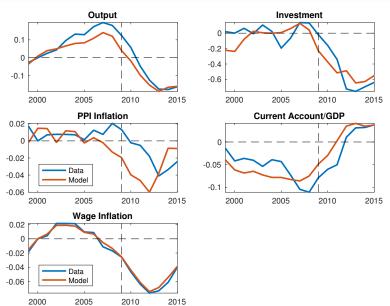
Parameter	Description	Value
β	Discount Factor	0.97
α	Capital Share	1/3
ε_h	Elasticity between H and F	1
ε_f	Elasticity between exports	1
φ	Inverse labor supply elasticity	1
γ	Risk Aversion	1
θ	Price Stickiness	0.5
ε	Elasticity of Substitution Goods	6
ϑ_{w}	Wage Stickiness	0.5
$\varepsilon_{\scriptscriptstyle W}$	Elasticity of Substitution Labor	6
ε_r	Elasticity of R to NFA	0.0001
φ_k	Adjustment Cost	1
δ	Depreciation	0.07
FC	Fixed cost of production, 10% of Y	0.0955

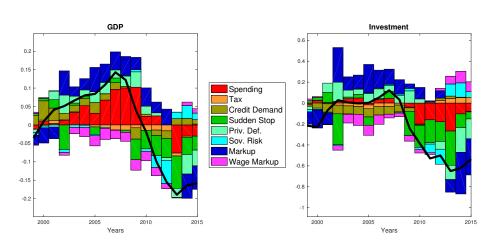

Calibrated Parameters-II

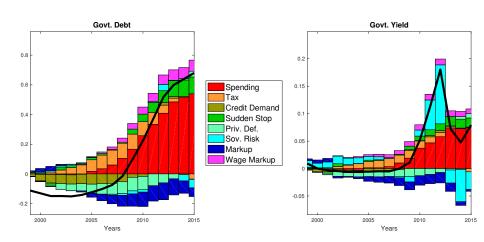
Parameter	Description	Value
σ	Openness (?)	0.3
χ	Fraction of Impatient (?)	0.65
Δ	Annual lending spread of 2%	1.02
$\frac{\bar{B}^h}{Y}$	Household debt to GDP of 50%	0.5
B ^g Y	Government debt to GDP of 120%	1.2
$\frac{G}{Y}$	Government consumption to GDP of 20%	0.2
$\frac{T}{Y}$	Public social expenditure to GDP of 20%	0.2
\bar{d}^h	Steady state default rate for Households	5.4%
\bar{d}^k	Steady state default rate for Corporates	5.4%
$\frac{B^k}{Y}$	Corporate debt to GDP of 50%	0.5
ψ_{sk}	Working Capital Constraint	1
τ	Tax rate, budget balance in SS	0.436
L	Leverage scaling	1

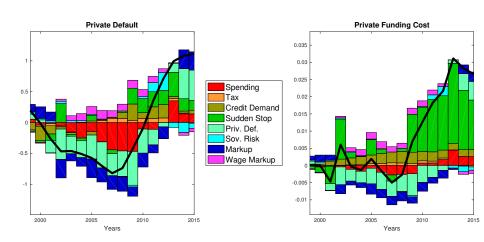

Calibrated Parameters-III

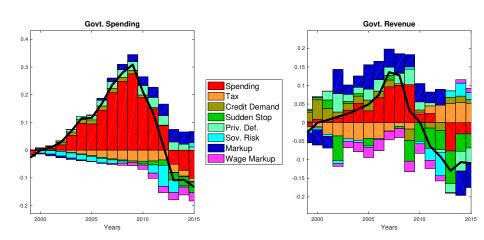
Parameter	Description	Value
F _b	Elasticity of govt. spending to public debt	0.05
Fn	Elasticity of govt. spending to employment	0.025
Fr	Elasticity of govt. spending to the int. rate	0.5
F _I	Persistence of govt. spending	0.75

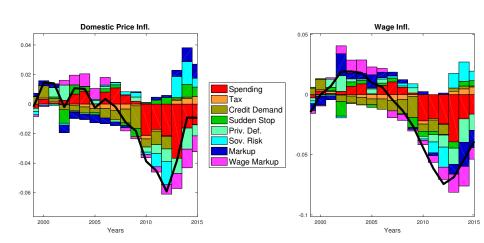

Data Inputs


Estimated Shocks (posterior)


Fit of the Model


Decomposition of Output and Investment


Decomposition of Sovereign Debt & Yield


Decomposition of Private Default and Funding Costs

Decomposition of Government Spending and Revenues

Decomposition of Domestic Price and Wage Inflation

Key Lessons

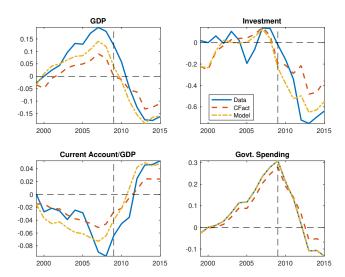
'Murder on the Orient Express'

- Fiscal trajectory prior to 2009 unsustainable. Stimulates output initially, but depresses it later on.
- First phase of the crisis (2009-2013)
 - Sovereign risk
 - Sudden stop
- Second phase of the crisis (2013-..)
 - Non-performing loans
 - Price markups.

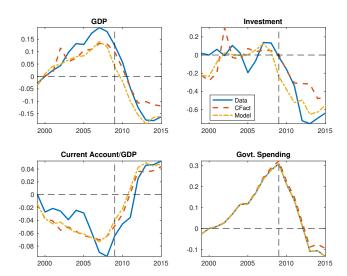
4 Counterfactual Exercises

$$\text{Compare } \hat{x}^T = \Gamma\left(\hat{\Theta}, \left\{\hat{\varepsilon}_k^T\right\}_{k=1}^K\right) \text{ and } \tilde{x}^T = \Gamma\left(\tilde{\Theta}, \left\{\tilde{\varepsilon}_k^T\right\}_{k=1}^K\right).$$

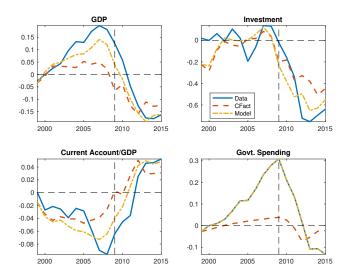
- 1. Low leverage (EME leverage)
- 2. Banking union
- 3. Fiscal discipline
- 4. Price flexibility (Latvia)

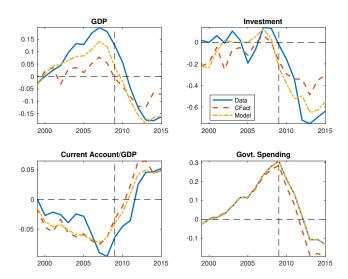

Counterfactual I: EME Leverage

	Greece	Typical EME	Min	Max
Credit / GDP	1.01	0.46	0.025	1.46
Sovereign Debt / GDP	1.38	0.343	0.063	0.68
Current Account /GDP	-0.083	-0.039	-0.10	+0.17


Table: Leverage and Imbalances Before Sudden Stop

Notes: Average from t-6 to t-2 where t is sudden stop.


Counterfactual I: EME Leverage


Counterfactual II: Banking Union

Counterfactual III: No Discretionary Spending

Counterfactual V: Low Price Stickiness

Conclusion: What Would Have Helped?

- What we can say
 - Exposure Y+10%, I+15%
 - Banking union Y+10%, I+30%
 - Sound fiscal Y+15%, I+20%
 - More flexible prices Y+15%, I+20%
- Open issues
 - Uncertainty (political, EZ risk)?
 - Early sovereign default?
 - Devaluation?