

Technology Strategy Center (TSC) Activities in the Bioeconomy Field

Tomohiko Kato

New Energy and Industrial Technology Development Organization (NEDO) Technology Strategy Center (TSC) Environment & Green Chemistry Unit

1. About TSC

- 2. Analysis of Case Study
- 3. Examples of Projects
- 4. Future Efforts

Activities:

- 1. Conducting surveys and analysis of domestic and international technology trends
- 2. Formulating technology strategies in key fields
- 3. Planning and designing strategy-based NEDO projects
- 4. Developing and improving management methods for cross-sectoral technology development and relevant tools, including databases
- 5. Fostering human resources capable of project management
- 6. Increasing the awareness of technology development strategies in society by appropriately disseminating relevant information

TSC Methodology

Bidirectional approach to determine key target technology fields and projects:

- Technology forecasting
- Backcasting from a desirable future society
- Positioning analysis

Technology Strategy Center

Project Management

TS	C	Promotion Dept.	Evaluation Dept.
Start	1-2 years	2-6 years	10 years
Gathering and Creation of Roadmaps	Strategy Formulation and Project Planning	Development and Demonstration Testing	Review and Follow-up Investigation

Features of NEDO projects:

- Mid- to long-term time frame
- Technology development coordinated with standardization
- Cross-industrial cooperation and integrated fields
- Full-scale demonstration
- International cooperation

1. About TSC

- 2. Analysis of Case Study
- 3. Examples of Projects
- 4. Future Efforts

Bioeconomy-Related Activities

		TSC Environment & Chemistry
Year	Activities/events around the world	Bioeconomy-related activities in Japan
2002		Biotechnology Strategy Guidelines Biomass Nippon Strategy
2005	EU research commissioner announces bioeconomy concept Kyoto Protocol goes into effect	
2006		Biomass Nippon Strategy (revised version)
2007	Germany releases En Route to the Knowledge-Based Bio-Economy	
2008	BioteCanada releases Beyond Moose and Mountain	Dream Biotechnology Japan
2009	OECD releases The Bioeconomy to 2030	Basic Law on Utilization of Biomass
2010	Germany releases national research strategy Bioeconomy 2030	Biomass Utilization Promotion Basic Plan
2011	EU releases Horizon 2020	
2012	EU releases Bioeconomy Strategy US releases National Bioeconomy Blueprint	Biomass Commercialization Strategy
2013	Germany, Netherlands, Brazil, South Africa, Malaysia, Sweden, and Belgium formulate bioeconomy strategies	
2014	Finland and Sweden formulate bioeconomy strategies	4th Basic Energy Plan
2015	UN adopts Sustainable Development Goals 1st Global Bioeconomy Summit in Berlin COP-21 adopts Paris Agreement Spain and Indonesia formulate bioeconomy strategies	Japan Revitalization Strategy 2015
2016	India, Thailand, Italy, and Norway formulate bioeconomy strategies US releases Bioeconomy Review	Japan Revitalization Strategy 2016 Global warming prevention law New Utilization Promotion Basic Plan National Energy and Environment Strategy for Technological Innovation Towards 2050
2017	France formulates bioeconomy strategy EU formulates bioeconomy review	Growth Strategy 2017
2018	2nd Global Bioeconomy Summit in Berlin EU formulates new bioeconomy strategy UK releases Bioeconomy Strategy	Growth Strategy 2018 5th Basic Energy Plan Interim Bio Strategy
2019		Final Bio Strategy (planned)
2020	3rd Global Bioeconomy Summit (planned)	

Three important approaches are being carried out for the realization of a sustainable society and global market led by environmental policies and/or initiatives.

TSC Outreach Activities

Technology Strategy Center

Preparing "TSC Foresight" publications which describe the latest developments in technology trends and identify issues to be addressed (http://www.nedo.go.jp/library/foresight.html)

Holding TSC Foresight Seminars

- Vol.1 Nanocarbon Materials
- Vol.2 **Functional Materials**
- Vol.3
- Vol.4
- Vol.5
- Hydrogen Energy Superconductivity Automotive Rechargeable Battery Global Warming Solution (HFC) Advanced Robotics Vol.6
- Vol.7
- Vol.8 Artificial Intelligence
- Vol.9 Computing, Electron Devices and Materials
- Vol.10 Power Laser
- Vol.11 Photovoltaics
- Vol.12 Geothermal Power Generation
- Vol.13 Metal Recycling
- Vol.14 Chemicals Manufacturing Process
- Vol.15 Self-assembly and Self-organization for Vol.16 Advanced Technologies in Biomanufacturing
- of Chemicals
- Vol.17 Unmanned Aircraft Systems (UAS)
- Vol.18 IoT Software
- Vol.19 Energy Systems with Super-distributed Energy Resources and Demands (Integration Study) Vol.20 Energy Storage Vol.21 Next-Generation Biofuels (Bio-Jet Fuels) Vol.22 Chemicals Production from Biomass Resources Vol.23 Novel Devices that use Biological Functions

- (Living Devices) Vol.24 Artificial Intelligence in Food Industry
- Vol.25 Structural Materials
- Vol.26 Instruments for Measurement and Analysis

Co-hosting workshops with JST-LCS* Topic: Analysis of renewable energy and reduction of its costs

*) JST-LCS : Japan Science and Technology Agency - Center for Low Carbon Society Strategy

TSC Environment & Chemistry

Chemical products and polymers derived from sugars and oils are being used commercially

Commercialization trends for chemical production using biomass-derived resources

Raw materials	Chemicals	Companies	Commercialization trends
Glucose	Lactic acid, ethanol, succinic acid, itaconic acid, ethyl acetate and others	Many companies including those from the United States, Canada, Brazil, China, and other Asian countries	 Commercialization of organic acid alcohol production mainly by fermentation (bioprocess) method from edible sugar
Glucose	Perfume, high performance polymer and others	Evolva (Switzerland)	 Production difficult for functional monomers with aromatic rings from petroleum by fermentation method (use of bioprocesses preferred)
Bio-oils	Oil-derived polymer Glycerol-based monomer	Arkema (France), Mitsui Chemicals, Toyobo, Unitika, Solvay (Belgium), Dow Dupont (US) and others	 Surfactants, polyamide, polyurethane, and others Epichlorohydrin from glycerol as a by-product of biodiesel
Cellulose	Cellulose nanofibers (CNFs)	Nippon Paper Industries, Oji Holdings, Daio Paper, Chuetsu Pulp Industry and others	 Various types of physically and chemically defibrillated cellulose nanofibers being commercialized
Hemicellulose	Furfural	Companies in China, India, Europe and others	 Furfural taken from hemicellulose being commercialized by many companies
Lignin	Vanillin	Borregard (Norway)	 Commercialization of vanillin (for flavor/polymer applications), an aromatic high-value-added monomer, taken from lignin

Source: TSC Foresight Vol.22 Chemicals Production from Biomass Resources

Case Study-2: Chemical Production Using Biomass-Derived Resources

TSC Environment & Chemistry

Japanese companies have been working on bioplastics for more than 30 years and have developed high-performance products that take advantage of plant-derived features.

Industrialized bioplastics

Classification	Polymer	Companies	Raw material (monomer)	Main properties	Production capacity (t/y)
General petroleum alternative resins	Many Asian companies PET (Thailand, Taiwan, and others)		Sugar (ethylene glycol)	Same as petroleum-derived PET	460,000
	PE	Braschem (Brazil)	Sugar (ethylene)	Same as petroleum-derived PE	200,000
	PLA (polylactic acid)	Nature Works (US) Hisun (China) and others	Sugar (lactic acid)	Biodegradability, low heat resistance	170,000
Plant-derived high- performance resins	PA (polyamide)	Arkema (France)	Castor oil	Heat resistance, chemical resistance	60,000
		Unitika	Castor oil	Heat resistance, high crystallinity, low water absorption	500
		Тоуоbo	Castor oil	Heat resistance, durability, low water absorption	1,000
	PTT(polytrimethylene terephthalate)	Dow DuPont (US)	Sugar (1,3-propanediol)	Durability, elasticity	120,000
	PBS (polybutylsuccinate)	Mitsubishi Chemical	Sugar (succinic acid, butanediol)	Biodegradability, processability	4,000
	PHA (hydrocicarboxylic acid polymer)	Danimer Scientific (US)	Sugar (3- hydroxyalkanoic acid)	Biodegradability	30,000
		Kaneka	Oil (3-hydroxyhexane- butyric-acid)	Marine biodegradability, processability	1,000
	PC (polycarbonate)	Mitsubishi Chemical	Sugar (isosorbide)	Light transmittance, strength resistance, impact resistance	5,000

Source: TSC Foresight Vol.22 Chemicals Production from Biomass Resources

Case Study-3: Chemical Production Using Biomass-Derived Resources

TSC Environment & Chemistry

Most cellulose nanofibers (CNF) contain micro-sized nano-fibril structures
 In Japan, the primary focus is on developing high-performance products

Industrialized cellulose nanofiber

Company/university	Country	Production capacity (t/y)	Production focus/methods
Borregaard	Norway	1,000	CNF containing microfibril cellulose
University of Maine	United States	300	 Refiner treatment used as base, resin reinforcing agent, humectant, and oil proof agent
American Process	United States	150	Cellulose nano-fibril/cellulose nanocrystal
Innventia	Sweden	30	 CNF nano-fiberized by enzymatic/mechanical treatment, carboxymethylated, and cationized CNF also produced
Nippon Paper	Japan	540	 Single nano-fiberized CNF (500 tons/year), reinforced resin CNF (10 tons/year) and food use CNF (30 tons/year)
Chuetsu Pulp Industry	Japan	100	 Counter injection of pulp suspension with two nozzles, CNF disintegrated by collision pressure
Daio Paper	Japan	100	 From fibrous to machine energy - energy saving by fibrillating Dry CNF for resin mixing also provided
Oji Paper	Japan	40	 CNFs nano-fiberized by introducing phosphate group, an ionic exchange group, to CNF surface of pulp to increase electrostatic repulsion between CNFs

Source: TSC Foresight Vol.22 Chemicals Production from Biomass Resources

Case Study-4: Chemical Production Using Biomass-Derived Resources (NEDO

TSC Environment & Chemistry

- For expansion of chemical production using biomass-derived resources in Japan, the following three steps need to be followed:
 - 1. Development of stable supplies of inexpensive biomass-derived raw materials
 - 2. Development of high-value-added applications
 - 3. Creation of market push and pull for biomass-derived products

Issues to be addressed for the production of chemicals derived from biomass resources

1.	About TSC	
2.	Analysis of Case Study	
3.	Examples of Projects	
4.	Future Efforts	

TSC Environment & Chemistry

- Separation of biomass-derived raw materials with high yields and maximized value
- Utilization of chemical ingredients and matching supply with demand
- Standardization to ensure the quality of biomass-derived chemical raw materials

Innovative Synthetic Biology Process

About TSC Analysis of Case Study Project Examples Future Efforts

2. Value addition process 1. Stable supply of basic Development of applications compounds/material from basic compounds \rightarrow Products that make use of · Glucose, cellulose, lignin, biotechnology (e.g. alcohol, organic acid biodegradability) 4. LCA evaluation and 3. Cost reduction market incentives · Securing raw materials · Clarifying benefit of Improving manufacturing biomass-derived products processes (e.g. $CO_2 \downarrow$ and biodegradability) · Scaling-up production · Market incentives policy