From Macro to Micro: Heterogeneous Exporters in the Pandemic

Jean-Charles Bricongne¹, Juan Carluccio^{1,2}, Lionel Fontagné^{1,3,4}, Guillaume Gaulier¹, Sebastian Stumpner¹

¹Banque de France ²U. of Surrey ³CEPII ⁴PSE

The views put forward are those of the author and do not represent the official views of the Banque de France or the Eurosystem.

Franco-German Fiscal Policy Seminar, 9 Nov 2021

Introd	uction
	accion

Trade margins

The collapse of top exporters

Supply versus demand

Introduction

Data

Trade margins

The collapse of top exporters

Supply versus demand

Motivation: trade collapse in early 2020

Data

French exports -42% y-o-y in April 2020 (world exports: -20%)

World exports calculated from export data of 97 countries, accounting for 90% of global exports in 2018. Last data point: Nov 2020. Growth computed as 12-month midpoint growth rate

Introd	uction
muou	uction

What we do

We study the microeconomic foundations of this collapse

- Use French transaction-level trade data Jan 2017 Dec 2020 \rightarrow Ex(imp)porter-by-product-by-destination-by-month.
- Decompose trade growth into margins of adjustment
- Document heterogeneity according to exporter size
- Dig deeper into the underlying drivers of such heterogeneity: supply versus demand
- Study what is behind the collapse of top exporters

Introduction	
--------------	--

What we find

Most of the adjustment through the firm intensive margin

Number of exporters fell by 25%, but exiters are very small

The largest firms drive the trade collapse

- \blacksquare 0.1% exporters (\sim 100 exporters) account for 57% of the export collapse (pre-crisis export share: 41%)
- Top exporters do not react more to GVC disruption (intermediate good imports)
- Top exporters react more to foreign demand shocks

Related literature

Covid and Trade

Data

- Impact of pandemic/lockdowns on trade flows: Antras et al. (NBER, '20), Berthou & Stumpner (mimeo '21), Espitia et al. (World Bank '21), Hayakawa et al. (JETRO WP, '20), Kejzar & Velic (Covid econ '20), de Lucio et al. (mimeo '20), Meier & Pinto (Mimeo, '20), Minondo (Applied econ '21),
- GVCs: Bonadio et al. (JIE, '21), Heise (FRBNY blog, '21), Lafrogne-Joussier, Martin, Méjean ('21)

Large firms in international trade

- Super-star exporters: Freund & Pierola (ReStat '15)
- Aggregate effects from idiosyncratic firm shocks: Eaton et al. (NBER '12), Gabaix (Ecta'11),Gaubert & Itskhoki (JPE '21), di Giovanni & Levchenko (JPE '12), di Giovanni et al. (Ecta '14, NBER'21)

Margins of international trade

BJRS (AER '09), Fernandes et al. ('19)

		.1	1.11	
nτ	ro		CTI	on

Trade margins

The collapse of top exporters

Supply versus demand

Introduction

Data

Trade margins

The collapse of top exporters

Supply versus demand

Disaggregated trade data

Monthly, firm-level export/import data, January 2017 - Dec 2020 (French Customs Office)

Unit of observation:

Data

- Firm-by-CN8product-by-destination(origin)-by-month
- For destinations inside EU: ID of the foreign partner company
- Coverage:
 - >98% of aggregate exports flows from official statistics.
 - Roughly 100k exporters per year, 45k per month.
 - Extra-EU trade: exhaustive data
 - Intra-EU trade:

 \rightarrow Exporters required to file the detail of their transactions (product code, destination) if annual exports exceed 460k euros: see Bergounhon et al. (mimeo '18).

 \rightarrow Importers required to file when cumulated yearly value imports exceed 460k euros

Firm-level balance sheets / Pandemic data

Data

FiBEN

- Balance sheet data collected by Bank of France
- Turnover > 0.75 million euros
- 200k firms / year

Oxford stringency index

- Hale et al (2021)
- Collected daily for a sample of 180 countries
- Aggregated into indices that range from 0 to 100 and are increasing in the measures' stringency
- Country-month averages of the index normalized to lie in the interval [0, 1].

[▶] Oxford Index

Introduction	1.1		
ILLOUILLIOI	Intro	duc	tion

Trade margins

The collapse of top exporters

Supply versus demand

Introduction

Data

Trade margins

The collapse of top exporters

Supply versus demand

A sharp adjustment at the Extensive Margin

The number of exporters fell substantially (-25% in April 2020)

Exiters hardly contribute to the aggregate collapse

■ Average exports of exiters in April & May 2019: 64k Euros → 4.5% of average of all exporters (1.4m Euros)

Note: Distribution of exporters (in grey) and distribution of exiters (in red) in April & May 2019. Exiters are defined as firms with positive exports in April & May 2019, but zero exports in April & May 2020.

The contribution of the firm extensive margin is very small

Decomposition:
$$\frac{\Delta X_t}{X_{t-1}} = \frac{\sum_{f \in S} \Delta X_{ft}}{X_{t-1}} + \frac{\sum_{f \in N} X_{ft} - \sum_{f \in X} X_{ft-1}}{X_{t-1}}$$

ntroduction		1.1.1
	ntroc	luction

Trade margins

The collapse of top exporters

Supply versus demand

Introduction

Data

Trade margins

The collapse of top exporters

Supply versus demand

Ten firms (legal units): one fifth of aggregate French exports

- \blacksquare Group exporters into bins based on their total exports in 2019: \approx 100k firms
- To be in top 1% / 0.1% / 0.01%, a firm needs >65m / >600m / >3bn Euros of annual exports. Total French exports in 2019: 488bn.

Top exporters contributed more than their share to the collapse

- Contribution of group $i = \frac{\Delta X_i}{\Delta X}$
- Top 0.1% (\sim 100 firms) contributed 57% (initial share: 41%)
- Top 0.01% (10 firms) contributed 32% (initial share: 19%)

A flexible empirical framework: midpoint growth rates by size

Baseline estimation: For firm f, product k, destination (origin) j and time t:

$$g_{fjk,t} = \underbrace{\alpha_{b(f)t}}_{\text{Bins Exporter Size}} + \epsilon_{fjk,t}$$

- g_{fjk,t}: year-on-year midpoint growth rate. Midpoint
- Group time periods into two-months intervals
- Then add controls

Introduction

Data

Top exporters' growth rate fell by more in April-May

 Estimate coefficients on size dummies separately for Jan-Feb (pre-shock) and Apr-May (export collapse)

Zooming in on the top 1,000 firms

Data

Placing top 1,000 firms (\sim top 1%) into 100 bins

nti	<u></u>	LICT	non
110	ou	ucu	

Trade margins

The collapse of top exporters

Supply versus demand

Introduction

Data

Trade margins

The collapse of top exporters

Supply versus demand

Covid as a supply/demand shock

Data

- Pandemic and policy responses (especially lockdowns) led to strong supply and demand responses: Closing of workplaces, work from home, shops closed, etc.
- Exporters may be affected by:
 - Foreign lockdowns through supply disruptions from intermediate inputs
 - Domestic lockdown
 - Foreign lockdowns through a demand channel
- Top exporters may have a higher elasticity with respect to these shocks

Introduction

Data

Trade margins

The potential drivers of collapse of top exporters

Supply

- Higher exposure to foreign supply shocks of intermediate inputs?
- Higher elasticity to foreign supply shocks of intermediate inputs?

Demand

- Higher exposure to foreign demand shocks?
- Higher elasticity to foreign demand shocks?

Introduction

Data

Trade margins

The potential drivers of collapse of top exporters

Supply

- Higher exposure to foreign supply shocks of intermediate inputs?
- Higher elasticity to foreign supply shocks of intermediate inputs?

Demand

- Higher exposure to foreign demand shocks?
- Higher elasticity to foreign demand shocks?

Intermediate imports to sales ratio as a proxy of the dependence on value chains

 Summarize a firm's exposure to foreign supply shocks through imported intermediate inputs by its ratio of imported intermediate inputs to sales

$$IIS_{f,2019} = \frac{X_{f,2019}^{M}}{Y_{f,2019}}$$

Then control for IIS ratio in size-estimations • FIBEN Subsample

IIS ratio is increasing in exporter size

- But lots of variation across exporters within a size bin
- A regression of IIS on size bin dummies only gives an R2 of 5%

The size effect holds when controlling for the IIS ratio

• Control for dummies of IIS ratio in size regressions:

$$g_{fkjt} = \underbrace{\alpha_{b(f)t}}_{\text{Bins Exporter Size}} + \underbrace{\gamma_{r(f)t}}_{\text{Bins IIS ratio}} + \epsilon_{fkjt}$$

Sort IIS ratio into deciles or bins of fixed length

and when controlling for origin-specific supply shocks

• Control alternatively for bins of constructed origin supply shocks:

Input Supply Shock_{ft} =
$$\underbrace{\frac{M_{f,2019}^{inp}}{Y_{f,2019}}}_{\text{IIS Ratio}} \times \underbrace{\sum_{j} \frac{M_{fj,2019}^{inp}}{M_{f,2019}^{inp}} \text{Supply Shock}_{jt}}_{\text{Weighted Avg of Origin Supply Shocks}}$$

• Supply shocks in origin *j* taken as lockdown stringency.

Effect of Origin Lockdown by Size Bin

Data

$$g_{fjk,t} = LockdownStringency_{j,t} imes \eta_{b(f)} + \beta_{ft} + \gamma_j + \delta_{kt} + \epsilon_{fjk,t}$$

Figure : Impact of Covid at origin on imports by exporter size

Source: French customs, Author's calculation.

Introduction

Data

The potential drivers of collapse of top exporters

Supply

- Higher exposure to foreign supply shocks of intermediate inputs?
- Higher elasticity to foreign supply shocks of intermediate inputs?

Demand

- Higher exposure to foreign demand shocks?
- Higher elasticity to foreign demand shocks?

ntroc	luction
	luction

Sectoral composition of bottom 99.9% vs top 0.1%

Differences largely driven by aircrafts

Controlling for the composition effects

Data

Add sector FEs to the estimation

$$g_{fjk,t} = \alpha_{b(f)t} + \beta_{st} + \epsilon_{fjk,t}$$

 $\beta_{\textit{st}}$: Dummy for HS2 code of observed flow

Add sector-by-destination FEs to the estimation

$$g_{fjk,t} = \alpha_{b(f)t} + \beta_{jst} + \epsilon_{fjk,t}$$

 β_{ist} : Dummy for the sector-by-destination cell of observed flow

Higher exposure to foreign demand shock is only part of the story

- Composition effects only partly explain the larger collapse by top exporters
- \rightarrow Top exporters also fall by more within markets

l m + v	o d		tio.	~
mu	ou	uc	LIUI	

(Weighted) Oxford index as a direct measure of exposure to the demand shock

- Weighted average destination lockdown stringency across size bins

Demand effect is larger for the top exporters

Interact destination lockdown stringency with dummies for size bins

 $g_{fjk,t} = Lockdown \; Stringency_{j,t} \times \eta_{b(f)} + \beta_{ft} + \gamma_j + \delta_{kt} + \epsilon_{ijk,t}$

• Could reflect larger absolute decline in exports or reallocation across destinations

THE FOULD TION
Incloauction

Trade margins

Conclusion

- Firm intensive margin accounts for almost the entire decline of exports(imports)
- Top (top 0.1%) traders adjust procyclically
 - Differences not systematically related to GVC participation
 - Top exporters decline by more within sectors and destinations
 - Top exporters react more to foreign lockdowns during Covid
- These results point to a large reaction of top exporters to demand shocks
- Similar role of top exporters during Covid and GFC Covid vs GFC

Introduction

Data

Trade margins

The collapse of top exporters

Supply versus demand

THANK YOU

30 / 48

Introduction

Data

Trade margins

The collapse of top exporters

Supply versus demand

APPENDIX

Exporters with and without filing obligation

Intr	oduc	tion	h
	ouuc		

Ti

Data

Midpoint growth rate accommodate churning with high frequency data

$$g_t = rac{X_t - X_{t-12}}{rac{1}{2}(X_t + X_{t-12})}$$

- g_t varies between -2 (for exit) and +2 (for entry)
- Can accommodate entry and exit, which is important given the high level of detail (transaction = firm-by-product-by-destination)
 Product and Destination Margins

see e.g. Haltiwanger et al. (Restat '13) on job creation by establishments

For small values of
$$\frac{X_t}{X_{t-12}}$$
, very close to $\log(\frac{X_t}{X_{t-12}}) \longrightarrow MP \text{ vs. dlog}$

Back

Decomposing the Firm Intensive Margin

Data

- Decomposition from Bernard et al. (2009)
- *Transaction*-level intensive margin accounts for roughly half of the total export collapse

(F)

Midpoint growth rate vs log change

Data

The exceptional role of large exporters during the collapse

Distribution of growth within bins

Larger exporters more likely to import...

Data

...and especially more likely to import intermediate goods

\ldots sourcing concentrated in the US and Europe

Exporters also reduce their imports

Data

FIBEN subsample is representative

Data

- 37% of 2019 exporters have data in FIBEN
- \blacksquare Mostly larger firms \rightarrow 71% of 2019 export value

Results of size estimations very similar in FIBEN subsample

Highly skewed distribution of IIS ratio

Data

Introduction

Data

The role of top exporters during Covid and GFC

 Top exporters decline by more during both Covid and GFC (but differences more pronounced during Covid)

▶ Back

Data on lockdown stringency across countries and months

Stringency

- Main indicator "Stringency index", composite indicator of:
 - School closures; workplace closures
 - Cancel public events; close public transport
 - Public information campaigns
 - Stay at home; restrictions on gatherings
 - Restrictions on internal movement; international travel controls

Coding of stringency

- Example of workplace closures
- 0 No measures ; 1 recommend closing (or work from home)
- 2 require closing (or work from home) for some sectors or categories of workers
- 3 require closing (or work from home) all but essential workplaces (eg grocery stores, doctors)

Firm Intensive and Extensive Margins during GFC

- GFC: Export collapse in France started in Jan 2009
- Firm intensive margin explains almost the entire fall.

COVID-19: Stringency Index, Apr 21, 2021

This is a composite measure based on nine response indicators including school closures, workplace closures, and travel bans, rescaled to a value from 0 to 100 (100 = strictest). If policies vary at the subnational level, the index is shown as the response level of the strictest sub-region.

Source: Hale, Angrist, Goldszmidt, Kira, Petherick, Phillips, Webster, Cameron-Blake, Hallas, Majumdar, and Tatlow (2021). *A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker).* Nature Human Behaviour. – Last updated 21 April, 17:00 (London time) OurWorldhData org/coronavirus. • CC BY

Source: Oxford COVID-19 Government Response Tracker & Our world in data.

Number of Partners vs Avg Value per partner

Number of Partners vs Avg Value per partner

- Not driven by a breakup of connections with more clients.
- Instead, average exports per client fall by more for top exporters
- Focus on intra-EU exports, and intensive margin of transactions. Then decompose $\Delta \log(X_{fsj}) = \Delta \log(N_{fsj}) + \Delta \log(\bar{X}_{fsj})$

Top exporters overreact in crisis times

Data

- Very similar growth rates prior to Covid
- Similar role of top exporters during the GFC

Note: Balanced Panel of exporters for each size bin. Exporters grouped into size bins based on their total exports in 2019.

Back