Breakup and Default Risks in the Great Lockdown

Giovanni Bonaccolto University of Enna "Kore" Nicola Borri LUISS University Andrea Consiglio University of Palermo

Franco-German Fiscal Policy Seminar November 10, 2021

Motivation

- In the immediate aftermath of the Covid-19 shock, fears of sovereign defaults and of a Eurozone (EZ) breakup invaded the nightmares of many investors.
- Sovereign default risks in the EZ:
 - outright default (i.e., a country stops servicing its debt),
 - debt *redenomination* (i.e., a country redenominates its debt in a new *undervalued* currency).
- Eurexit and redenomination foreign & domestic law sovereign cds and bond yields

Contribution

- 1. We use sovereign credit default swaps (CDS) with different default clauses and denominated in different currencies to:
 - separately estimate redenomination and outright default risks,
 - decompose redenomination risk in components associated with *direct* redenomination and currency depreciation risks.
- 2. We model breakup and default risk spillovers in the EZ with Δ CoVaR (Adrian and Brunnermeier, 2016):
 - *new* multiple-regression ∆CoVaR to account for simultaneous effect of different sovereigns,
 - filter the relevant nodes with regularization techniques (Elastic Net).

Preview of results

- 1. **Risk of EZ breakup** in the aftermath of Covid-19 shock is small (but significant) and not larger than in the pre-Covid-19 period.
- 2. Evidence of spillovers: redenomination risk ↑ in one country is associated with default premia ↑ and bond spreads ↑ in other EZ countries.
- 3. A sizeable fraction of the variation in redenomination and default premia reflects two factors:
 - the insurance cost against a **euro expected depreciation** conditional on redenomination,
 - liquidity premia in the EZ sovereign CDS and bond markets.

Redenomination Risk

To begin with: What is a sovereign CDS? (I/II)

- A sovereign CDS is an insurance contract in which the reference entity is the sovereign government (Duffie, 1999; Pan and Singleton, 2008).
- The CDS premium (or spread) is the periodic payment the protection buyer will have to make until maturity of the contract to the protection seller.
- In return, the seller agrees to pay a third party debt if this party is in default.
- The International Swap and Derivative Association (ISDA) establishes the events that trigger a CDS contract.

example: Italy & Germany

To begin with: What is a sovereign CDS? (II/II)

- Sovereign CDS are available in different *currencies* (i.e., euro or dollar):
 - Conditional on a credit event, the protection seller pays:
 - \star euros to the protection buyer for a euro contract,
 - \star dollars to the protection buyer for a dollar contract.

CDS: CR and CR14 default clauses

- For CDS based on (*older*) ISDA 2003 default definitions (CR), redenomination does not trigger a credit event as long as it "*involves the currencies of the G7 countries and AAA-rated OECD economies*".
- For CDS based on (*current*) 2014 default definitions (CR14), redenomination *de facto* is always considered a credit event.
- Both CR and CR14 contracts are currently actively traded.

Example: CR and CR14 default clauses

Notes: Italy belongs to the G7. Spain is a non-G7 country with a rating below AAA.

For G7 countries we identify the **redenomination premium** of sovereign *i* (possibly up to a liquidity premium) as the difference between CR14 and CR premia:

 $RP^{i} = CDS^{i,CR14} - CDS^{i,CR}$

• other differences • redenomination with default • how important?

Currency redenomination premium

- Suppose investors expect a euro depreciation conditional on a credit event in sovereign *i*.
- They can hedge this (conditional) currency risk using a *quanto*:

$$Q^i = CDS^{i, igodoldsymbol{\in}} - CDS^{i, \$}$$

- The **quanto premium** captures the expected currency depreciation (possibly up to a liquidity premium) conditional on a credit event and is usually negative.

Decomposing the redenomination premium

- Combining G7 (or AAA) sovereign CDS with different default clauses and currencies we can decompose the dollar redenomination premium as follows:

$$RP^{i,\$} = \underbrace{RP^{i,\clubsuit}}_{\text{euro redenomination premium (ERP)}} + \underbrace{(Q^{i,CR} - Q^{i,CR14})}_{\text{currency redenomination premium (CRP)}}$$

where:

- ERP is a *direct* redenomination premium,
- CRP is a currency premium conditional on redenomination.

▶ algebra ► CDS notionals ► liquidity ► country-level characteristics

Decomposing the redenomination premium (Italy)

Model

- We build on the ∆CoVaR measure of systemic risk (Adrian and Brunnermeier, 2016) and critically introduce:
 - a multiple-regression framework,
 - regularization techniques (Elastic Net).
- We denote our new systemic risk measure multiple-regression CoVaR, or MCoVaR.

Sketch of the Model

- CoVaR is the value at risk (VaR) of one variable (y) conditional on a second variable (x) being at its VaR.
- Δ CoVaR measures the marginal contribution of x on the VaR of y (i.e., when x moves from its median to a distress state).
- We take \triangle CoVaR as measure of redenomination and default risk spillovers:
 - ΔCoVaR does not consider the potential contemporaneous effects of other variables (i.e., sovereigns).
 - We include *N* sovereigns in a unique model and use the Elastic Net to deal with the curse of dimensionality (Zou and Hastie, 2005).

Estimation Results

Data

- Daily sovereign CDS from Markit from 1/1/2020 to 9/14/2020.
- Countries: Austria, Germany, France, Belgium, Spain, Finland, Ireland, Italy, Netherlands, Portugal, and Spain.
- Default clauses: CR and CR14.
- Currencies: U.S. dollar and euro.
- Maturity: 5Y.
- Additional data: daily yields on benchmark EZ 10-year government bonds.
- CDS quotes summary stats redenomination premium summary stats CDS CR14 summary stats CDS CR
- summary stats CDS CR14 (long sample) summary stats CDS CR (long sample)

Two Models (for France, Germany, Italy and the Netherlands)

- 1. Breakup risk model \rightarrow effect on redenomination premium:
 - dependent variable: dollar redenomination premium country i
 - covariates:
 - \star currency (CRP) and euro (ERP) redenomination premia of countries *j*,
 - ⋆ liquidity premium,
 - * additional control and state variables.
- 2. Default risk model \rightarrow effect on the default premium:
 - dependent variable: dollar CR14 CDS premium country *i*.
 - covariates:
 - \star currency (CRP) and euro (ERP) redenomination premia of countries *j*,
 - * liquidity premium,
 - \star additional control and state variables.

Breakup risk model

	FRANCE		GERMANY		ITALY		NETHERI	NETHERLANDS	
	CRP	ERP	CRP	ERP	CRP	ERP	CRP	ERP	
FRANCE			0.000	0.000	0.000	0.000	0.000	0.000	32.777***
GERMANY	31.265***	16.162***			-1.678	0.000	0.000	0.000	0.000
ITALY	1.113	0.000	0.000	0.000			0.000	0.000	37.909***
NETHERL.	8.216	5.467	0.644	14.289***	0.000	1.810			3.647

Note: The dependent variable is the dollar redenomination premium. The model is estimated by Elastic Net on 5-year CDS contracts. Marginal effect is reported as a percentage of the unconditional value at risk. Liquidity is measured as the first two principal component of the difference between CDS premia with contracts CR14 and CR for non-G7 Eurozone countries with rating below AAA. Regressions always include the t - 1 values of the dependent variable and a set of state (time t - 1) variables. Standard errors are computed by wild bootstrap (Wang et al., 2018). Data are daily from Markit and Datastream for the period 1/1/2020 to 9/14/2020.

model #1 (alternative versions)

Default risk model

	FRANCE		GERMANY		ITALY		NETHERLA	LIQUIDITY	
	CRP	ERP	CRP	ERP	CRP	ERP	CRP	ERP	
FRANCE			8.283	1.373	-14.912***	2.318	32.166***	0.000	69.922***
GERMANY	11.640**	16.681**			-8.579***	25.130***	13.192***	0.000	16.394***
ITALY	7.967**	24.927***	7.063***	0.000			0.000	0.000	40.312***
NETHERL.	28.699***	40.592***	20.211***	17.961*	15.905***	10.321			1.407

Note: The dependent variable is the dollar CDS CR14 premium. The model is estimated by Elastic Net on 5-year CDS contracts. Marginal effect is reported as a percentage of the unconditional value at risk. Liquidity is measured as the first two principal component of the difference between CDS premia with contracts CR14 and CR for non-G7 Eurozone countries with rating below AAA. Regressions always include the t - 1 values of the dependent variable and as et of state (time t - 1) variables. Standard errors are computed by wild bootstrap (Wang et al., 2018). Data are daily from Markit and Datastream for the period 1/1/2020 to 9/14/2020.

Breakup risk model: Covid vs. pre-Covid samples

Default risk model: Covid vs. pre-Covid samples

Effect on sovereign bond spreads in the pre-Covid sample

	FRANCE		GERMANY		ITALY		NETHERLA	NDS	LIQUIDITY
	CRP	ERP	CRP	ERP	CRP	ERP	CRP	ERP	
AUSTRIA	4.158***	2.118**	0.000	0.000	6.774***	20.024***	0.000	0.000	14.480***
BELGIUM	4.330**	7.094***	0.000	0.000	6.465***	13.498***	0.280	0.000	12.147***
FINLAND	6.786**	1.468	2.170	0.000	12.360***	22.844***	-4.428**	3.112	15.182***
FRANCE			0.920*	0.000	7.901***	10.985***	0.000	0.000	14.933***
IRELAND	11.242***	1.338	1.287*	-0.074	0.777	11.229***	0.000	0.000	8.359***
ITALY	4.027***	3.310***	0.000	0.000			0.000	0.000	38.495***
NETHERL.	1.711***	3.338***	0.000	0.000	0.000	6.557***			10.401***
PORTUGAL	7.756**	0.000	0.000	0.000	17.424***	34.347***	-8.408**	0.000	15.841***
SPAIN	2.637	1.791	0.924*	0.000	13.620***	28.424***	0.000	0.000	18.267***

Note: The dependent variables are the sovereign spreads for the benchmark 10-year maturity bonds with respect to the yield on German 10-year government bond. The model is estimated by EN. Marginal effect is reported as a percentage of the unconditional value at risk of sovereign bond spreads. Liquidity is proxied by the first principal component of the spread difference between CDS with contracts CR14 and CR for non-G7 Eurozone countries. Panel (a) refers to the period around the COVID-19 shock (1/1/2020-9/14/2020); Panel (b) refers to the larger period starting in November 2015 (11/2/2015-9/14/2020). For both samples, the response countries are listed in the first column. Regressions always include a set of time state variables: the t - 1 values of the dependent variable, and the returns of the S&P Global Euro equity index, the IBOXX Euro corporate index, the VDAX volatility index, and the euro 1-month OIS index as set of state variables. Standard errors are computed using the wild bootstrap method (Wang et al., 2018). Data are daily from Markit, Datastream, and Bloomberg.

Conclusions

- The risk of a EZ breakup around the Covid-19 shock is significant although quantitatively it is not larger than in the period before the Covid-19 shock.
- This evidence is consistent with the fact that redenomination and default risks are mostly related to country characteristics that are stable in our samples (e.g., fiscal capacity).
- The effect of redenomination and default risks is strongly reduced after the ECB intervention with a massive government bond purchase program (e.g., the PEPP program).

Thank you!

References I

- Acharya, V. V., T. Eisert, C. Eufinger, and C. Hirsch. 2018. Real effects of the sovereign debt crisis in Europe: Evidence from syndicated loans. *The Review of Financial Studies* 31:2855–2896.
- Adelino, M., I. Cunha, and M. A. Ferreira. 2017. The economic effects of public financing: Evidence from municipal bond ratings recalibration. *The Review of Financial Studies* 30:3223–3268.
- Adrian, T., and M. K. Brunnermeier. 2016. CoVaR. The American Economic Review 106:1705–1741.
- Balduzzi, P., E. Brancati, M. Brianti, and F. Schiantarelli. 2019. Populism, Political Risk and the Economy: Lessons from Italy. Working Paper.
- Bayer, C., C. Kim, and A. Kriwoluzky. 2018. The term structure of redenomination risk. Working Paper.
- Borri, N. 2019. Redenomination-risk spillovers in the Eurozone. Economics Letters 174:173–178.
- Chamon, M., J. Schumacher, and C. Trebesch. 2018. Foreign-law bonds: Can they reduce sovereign borrowing costs? *Journal of International Economics* 114:164–179.
- Christoffersen, P. 1998. Evaluating interval forecasts. International Economic Review 39:841-862.
- Davino, C., M. Furno, and D. Vistocco. 2014. Quantile regression: theory and applications. Wiley.
- De Santis, R. A. 2019. Redenomination risk. Journal of Money, Credit and Banking 51:2173–2206.
- Duffie, D. 1999. Credit Swap Valuation. Financial Analysts Journal 55:73-87.

References II

Engle, R. F., and S. Manganelli. 2004. CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles. *Journal of Business & Economic Statistics, American Statistical Association* 22:367–381.

Gros, D. 2018. Italian risk spreads: Fiscal versus redenomination risk. VoxEU.

Klose, J., and B. Weigert. 2014. Sovereign yield spreads during the euro crisis: Fundamental factors versus redenomination risk. *International Finance* 17:25–50.

Kremens, L. 2019. Currency redenomination risk. Tech. rep., Mimeo.

- Kupiec, P. 1995. Techniques for verifying the accuracy of risk measurement models. *Journal of Derivatives* 3:73–84.
- Pan, J., and K. J. Singleton. 2008. Default and recovery implicit in the term structure of sovereign CDS spreads. *The Journal of Finance* 63:2345–2384.
- Pastor, L., and P. Veronesi. 2018. Inequality aversion, populism, and the backlash against globalization. Tech. rep., National Bureau of Economic Research.
- Wang, L., I. Van Keilegom, and A. Maidman. 2018. Wild residual bootstrap inference for penalized quantile regression with heteroscedastic errors. *Biometrika* 105:859–872.
- Zou, H., and T. Hastie. 2005. Regularization and Variable Selection via the Elastic Net. *Journal of the Royal Statistical Society. Series B (Statistical Methodology)* 67:301–320.

Appendix

Domestic & Foreign Law

- A sovereign can redenominate outstanding government bonds issued under *domestic law* with a legislative act (Gulati, 2017).
- The same is not true for bonds issued under *foreign* law (e.g., UK or New York laws).
- For the sovereigns in the Eurozone, most government bonds are under domestic law (Chamon et al., 2018).
- back

Sovereign CDS and Bond Yields

Redenomination Premia and Bond Yields

The risk of Italian government debt

Eurexit

- If a country decides to leave the Eurozone (*eurexit*), then debt redenomination is likely to be optimal.
- Without a redenomination, the real value of debt would increase (under the assumption that the new domestic currency depreciates vis-a-vis the euro).
- For example, see the discussion in Kremens (2019), Pastor and Veronesi (2018) and Balduzzi et al. (2019).

Asset Package Delivery

- Differences between CR and CR14 also depend on the "Asset Package Delivery" (APD) clause introduced by the ISDA 2014 credit derivative definitions (but no distinction between G7 and non-G7 countries):
 - APD allows market participants to deliver assets resulting from the corresponding deliverable obligations that have been converted in connection with a restructuring event.
 - These assets are also used to determine the final price in an auction (i.e., the recovery value).
 - In instances where bonds are fully expropriated and no assets are delivered in exchange, the value of the asset package will be deemed to be zero.

Redenomination and Default

 If investors expect that an outright default will follow a debt redenomination, then we should expect no difference between the premium on CR and CR14 contracts also for G7 countries (possibly up to a liquidity premium).

How important is redenomination risk?

- Using data since June 2018, Gros (2018) estimates that 50% of the increase in the spread of Italian sovereign bonds is due to redenomination risk:
 - sovereign CDS of different vintages,
 - sovereign bonds denominated in euros and dollars.

CDS data

- CDS are traded over-the-counter.
- We obtain daily quotes for CR and CR14 contracts, denominated in euro and U.S. dollar, for different maturity, from Markit via WRDS.
- Markit aggregates quotes from a range of market makers and intermediaries.
- Quotes are not necessarily based on transaction prices.
- Markit CDS quotes are the standard data used by derivative market participants.

Summary Statistics (Redenomination Premium)

	Panel A: levels (bp)														
	d	ollar rede	enominatio	on premiu	m	cui	rency re	denomina	ation prem	ium	e	euro redenomination premium			
	μ	σ	min	max	VaR	μ	σ	min	max	VaR	μ	σ	min	max	VaR
France	10.636	2.469	7.284	16.326	14.767	3.245	1.135	1.257	6.256	4.873	7.391	1.522	5.350	10.738	10.108
Germany	3.671	0.800	2.289	5.340	4.575	1.705	1.109	0.357	4.211	3.571	1.966	0.609	0.344	2.764	2.707
Italy	44.812	8.399	29.989	65.596	60.635	7.979	2.437	-2.857	14.869	10.699	36.833	8.613	23.107	56.451	53.480
Netherlands	2.558	0.453	2.036	3.538	3.403	-0.101	0.393	-0.950	1.088	0.580	2.659	0.495	1.561	4.116	3.665
	Panel B: first differences (bp)														
	Δ	dollar red	denominat	tion premi	um	Δ α	Δ currency redenomination premium					Δ euro redenomination premium			
	μ	σ	s	к	VaR	μ	σ	S	к	VaR	μ	σ	s	ĸ	VaR
France	-0.009	0.419	2.718	26.930	0.466	0.004	0.351	0.122	7.768	0.542	-0.013	0.370	0.543	7.805	0.713
Germany	0.004	0.166	1.080	11.645	0.248	0.001	0.176	0.008	15.911	0.228	0.003	0.135	1.696	17.102	0.162
Italy	-0.018	2.592	-0.131	11.068	3.655	-0.001	1.746	-0.756	18.081	1.945	-0.017	1.779	0.507	9.995	3.181
Netherlands	-0.001	0.135	0.624	8.084	0.195	-0.002	0.348	-0.247	6.053	0.585	0.002	0.348	0.271	5.715	0.572

Notes: Data are daily from Markit for the period 1/1/2020 to 4/28/2020 and reported in basis points.

Summary Statistics (CDS CR14)

				F	anel A: CR1	4 – levels (b	p)					
		euro	CDS pre	mium		dollar CDS premium						
	μ	σ	min	max	VaR	μ	σ	min	max	VaR		
France	18.903	7.581	10.939	37.262	31.610	27.147	10.413	15.812	52.169	44.416		
Germany	9.956	3.419	5.770	16.660	15.419	15.383	5.771	8.598	26.827	24.801		
Italy	128.598	38.064	71.265	222.212	197.085	163.726	42.628	95.383	265.348	239.301		
Netherlands	10.185	2.259	7.446	14.357	14.070	14.109	3.180	10.689	20.136	19.668		
Median	14.544	5.500	9.193	26.961	23.514	21.265	8.092	13.250	39.498	34.608		
	Panel B: CR14 – first differences (bp)											
		Δeu	ro CDS pr	emium		∆ dollar CDS premium						
	μ	σ	S	к	VaR	μ	σ	S	κ	VaR		
France	-0.016	1.159	2.165	24.493	1.624	-0.018	1.540	2.113	25.473	1.952		
Germany	0.007	0.462	1.135	11.631	0.785	0.010	0.736	0.948	10.427	1.268		
Italy	0.038	8.254	0.101	21.030	11.497	0.065	10.769	0.188	20.382	14.236		
Netherlands	0.000	0.423	1.245	10.437	0.557	-0.003	0.540	1.578	13.720	0.740		
Median	0.004	0.811	1.190	16.330	1.205	0.004	1.138	1.263	17.051	1.610		

Notes: Data are daily from Markit for the period 11/1/2020 to 4/28/2020 and reported in basis points.

Summary Statistics (CDS CR)

					Panel A: CF	CR – levels (bp)						
		eur	o CDS pre	emium			dolla	r CDS pre	emium			
	μ	σ	min	max	VaR	μ	σ	min	max	VaR		
France	11.512	6.151	5.007	26.524	21.817	16.511	7.986	8.448	35.843	29.829		
Germany	7.990	3.810	3.876	15.777	14.349	11.712	5.097	6.200	22.353	20.350		
Italy	91.764	29.941	47.814	167.143	143.860	118.914	35.136	59.823	206.021	181.074		
Netherlands	7.526	2.013	5.206	12.248	11.088	11.551	2.770	8.614	17.222	16.493		
Median	9.751	4.980	5.106	21.151	18.083	14.112	6.542	8.531	29.098	25.090		
				Pan	el B: CR – fi	rst difference	s (bp)					
		Δ ει	iro CDS p	remium		∆ dollar CDS premium						
	μ	σ	S	к	VaR	μ	σ	S	к	VaR		
France	-0.003	0.938	2.106	24.493	1.210	-0.009	1.175	1.779	25.473	1.457		
Germany	0.004	0.482	0.652	11.631	0.934	0.006	0.650	0.495	10.427	1.288		
Italy	0.055	6.779	-0.190	21.030	9.444	0.082	8.847	-0.067	20.382	11.315		
Netherlands	-0.002	0.444	1.718	10.437	0.650	-0.002	0.470	1.596	13.720	0.611		
Median	0.001	0.710	1.185	16.330	1.072	0.002	0.912	1.045	17.051	1.373		

Notes: Data are daily from Markit for the period 1/1/2020 to 4/28/2020 and reported in basis points.

Summary Statistics (CDS CR14, Long Sample)

				F	anel A: CR1	4 – levels (b	p)					
		euro	CDS pre	mium		dollar CDS premium						
	μ	σ	min	max	VaR	μ	σ	min	max	VaR		
France	19.639	7.224	10.646	47.997	33.050	28.356	9.868	15.635	68.242	45.978		
Germany	9.365	2.833	4.618	17.303	14.771	14.353	4.377	8.351	30.838	23.036		
Italy	128.430	38.388	61.398	238.905	201.759	159.947	45.968	85.354	286.095	250.427		
Netherlands	11.843	4.234	6.120	29.082	19.385	17.106	5.930	9.270	35.053	28.157		
Median	15.741	5.729	8.383	38.540	26.217	22.731	7.899	12.453	51.648	37.067		
	Panel B: CR14 – first differences (bp)											
		Δeu	ro CDS pr	emium		Δ dollar CDS premium						
	μ	σ	S	к	VaR	μ	σ	s	к	VaR		
France	-0.011	1.000	-1.952	88.316	0.917	-0.010	1.325	-2.127	90.198	1.211		
Germany	-0.003	0.517	-0.637	41.368	0.537	-0.002	0.585	1.014	58.439	0.642		
Italy	0.009	6.228	3.209	71.390	7.828	0.025	6.907	3.310	70.587	7.946		
Netherlands	-0.001	0.476	1.002	20.079	0.698	-0.004	0.586	1.444	19.622	0.907		
Median	-0.002	0.759	0.182	56.379	0.807	-0.003	0.955	1.229	64.513	1.059		

Notes: Data are daily from Markit for the period 10/1/2014 to 4/28/2020 and reported in basis points.

Summary Statistics (CDS CR)

					Panel A: Cl	R – levels (bp)					
		eur	o CDS pre	emium			dolla	r CDS pre	emium			
	μ	σ	min	max	VaR	μ	σ	min	max	VaR		
France	14.051	6.467	5.007	33.824	25.848	20.057	8.849	8.448	48.151	35.973		
Germany	7.696	2.987	3.756	16.235	13.364	11.811	4.455	6.170	27.570	19.954		
Italy	91.621	24.906	41.287	167.143	130.667	114.443	28.731	58.001	206.021	161.110		
Netherlands	9.863	4.439	4.180	20.892	18.154	14.861	6.312	6.715	32.630	26.285		
Median	11.957	5.453	4.593	27.358	22.001	17.459	7.580	7.581	40.391	31.129		
				Pan	el B: CR – fi	rst difference	s (bp)					
		Δeu	ro CDS p	remium		∆ dollar CDS premium						
	μ	σ	S	к	VaR	μ	σ	s	к	VaR		
France	-0.011	0.691	3.009	88.316	0.753	-0.013	0.911	4.452	90.198	0.951		
Germany	-0.005	0.520	-0.364	41.368	0.605	-0.005	0.520	0.636	58.439	0.587		
Italy	-0.011	4.286	0.989	71.390	5.359	0.002	5.012	1.432	70.587	5.984		
Netherlands	-0.004	0.477	1.052	20.079	0.723	-0.006	0.619	1.864	19.622	0.839		
Median	-0.008	0.605	1.021	56.379	0.738	-0.005	0.765	1.648	64.513	0.895		

Notes: Data are daily from Markit for the period 10/1/2014 to 4/28/2020 and reported in basis points.

Decomposition: Algebra

- Start from definition of redenomination premium in dollars:

$$RP^{\$} = CDS^{\$, CR14} - CDS^{\$, CR}$$

- Add and subtract the euro premium for contracts CR and CR14:

$$\textit{RP}^{\$} = \textit{CDS}^{\$,\textit{CR14}} + (\textit{CDS}^{\textcircled{e},\textit{CR14}} - \textit{CDS}^{\textcircled{e},\textit{CR14}}) - \textit{CDS}^{\$,\textit{CR}} + (\textit{CDS}^{\textcircled{e},\textit{CR}} - \textit{CDS}^{\textcircled{e},\textit{CR}})$$

- Apply the definition of quanto: $Q = CDS^{\bigoplus} - CDS^{\$}$, and rearrange terms:

$$\textit{RP}^{\$} = \textit{RP}^{\clubsuit} + (\textit{Q}^{\textit{CR}} - \textit{Q}^{\textit{CR14}})$$

Decomposing the Redenomination Premium (Italy, Long Sample)

Decomposing the Redenomination Premium (France, Germany & the Netherlands)

- We consider aggregate liquidity shocks to the CDS market by estimating liquidity Premia:
 - the first two principal components of the differences in the CDS premia between CR and CR14 contracts for non-G7 Eurozone countries (which account for \approx 90% of total variation).

CDS Notionals

Summary Statistics (Bid/Ask spread)

	μ	σ	min	max	median	VaR
-		Pa	anel A: ba	seline san	nple	
Belgium	6.000	0.000	6.000	6.000	6.000	6.000
Finland	4.000	0.000	4.000	4.000	4.000	4.000
France	4.733	1.255	3.743	7.657	3.743	6.991
Germany	3.701	1.257	2.693	6.839	2.693	5.718
Ireland	8.573	1.174	6.160	10.604	9.374	9.374
Italy	6.513	2.866	3.660	14.080	4.789	12.296
Portugal	20.000	0.000	20.000	20.000	20.000	20.000
Spain	7.000	0.000	7.000	7.000	7.000	7.000
Netherlands	5.000	0.000	5.000	5.000	5.000	5.000
		Pa	nel B: alte	rnative sa	mple	
Belgium	5.975	0.220	4.000	6.000	6.000	6.000
Finland	4.000	0.000	4.000	4.000	4.000	4.000
France	4.356	2.098	2.856	22.734	4.000	5.344
Germany	3.448	0.951	2.353	9.978	3.350	4.491
Ireland	10.000	2.035	5.246	30.876	9.390	12.905
Italy	7.137	2.090	1.473	13.627	7.365	10.000
Portugal	19.900	0.957	10.000	20.000	20.000	20.000
Spain	6.985	0.173	5.000	7.000	7.000	7.000
Netherlands	4.990	0.128	3.000	5.000	5.000	5.000

Country-Level Characteristics

			Panel /	A: GDP			Panel B: PUBLIC DEBT						
	2014	2015	2016	2017	2018	2019	2	014	2015	2016	2017	2018	2019
Austria	3.35	3.34	3.37	3.37	3.40	3.40	3	8.04	3.13	3.11	3.02	2.94	2.86
Belgium	4.05	4.04	4.06	4.06	4.06	4.06	4	.68	4.69	4.74	4.73	4.73	4.76
Finland	2.08	2.05	2.05	2.06	2.07	2.07	1	.34	1.44	1.44	1.44	1.43	1.45
France	21.57	21.31	21.10	20.90	20.75	20.75	2	2.13	22.50	23.01	23.53	23.83	24.23
Germany	29.41	29.37	29.60	29.54	29.49	29.49	2	4.03	23.40	22.80	22.07	21.30	20.90
Ireland	1.96	2.55	2.57	2.71	2.86	2.86	2	2.21	2.16	2.11	2.10	2.12	2.08
Italy	16.35	16.04	16.01	15.81	15.57	15.57	2	3.90	23.98	24.03	24.27	24.51	24.54
Netherlands	6.75	6.69	6.69	6.72	6.83	6.83	4	.89	4.73	4.56	4.33	4.50	4.54
Portugal	4.13	4.17	4.03	4.25	4.38	4.38	2	2.50	2.52	2.58	2.58	2.57	2.55
Spain	10.37	10.44	10.52	10.58	10.60	10.60	1	1.28	11.46	11.61	11.93	12.08	12.10
		Panel C	: STOCH	K MARKI	ET CAP				Par	el B: BA	NK ASSI	ETS	
	2014	2015	2016	2017	2018	2019	2	014	2015	2016	2017	2018	2019
Austria	1.39	1.38	1.40	1.77	1.60	1.49	9	8.98	98.98	97.52	93.89	90.06	-
Belgium	7.30	7.70	8.75	7.76	6.49	5.83	9	8.35	98.49	96.57	91.70	86.50	-
Finland	4.58	4.56	4.55	4.27	4.58	3.98	9	9.87	99.79	98.11	94.25	91.05	-
France	27.11	27.09	27.55	27.58	30.20	31.38	9	7.82	98.18	96.60	92.49	88.37	-
Germany	22.85	23.10	22.31	22.28	21.47	21.10	9	9.84	99.84	98.42	94.70	90.80	-
Ireland	1.86	2.28	2.05	2.23	1.97	1.99	9	2.65	84.62	81.06	77.36	75.64	-
Italy	9.26	9.89	8.72	9.28	8.73	9.02	9	5.20	94.79	92.90	89.06	84.67	-
Netherlands	11.22	10.59	11.74	11.99	12.60	13.86	9	9.86	99.74	98.40	95.44	92.69	-
Portugal	1.11	1.17	1.08	1.10	1.12	1.06	9	9.50	99.54	97.64	93.61	90.74	-
Spain	13.32	12.24	11.84	11.73	11.22	10.28	9	8.24	98.05	96.50	92.61	88.23	-

Multiple-regression CoVaR (I/II)

 The Elastic Net combines LASSO and ridge methods and minimizes the following loss function:

$$L(\delta_{\theta},\boldsymbol{\beta}_{\theta}) = \frac{1}{T-1} \sum_{t=2}^{T} \rho_{\theta} \left(x_{\boldsymbol{N},t} - \delta_{\theta} - \boldsymbol{\beta}_{\theta} \boldsymbol{Z}_{t}' \right) + \nu \left[\alpha ||\boldsymbol{\beta}_{\theta}||_{1} + \frac{1-\alpha}{2} ||\boldsymbol{\beta}_{\theta}||_{2}^{2} \right],$$

where $\nu > 0$ and $0 \le \alpha \le 1$.

Multiple-regression CoVaR (I/II)

- We compute the multiple-regression CoVaR (MCoVaR) of the *N*-th sovereign conditional on the state of the *i*-th sovereign (for $i = 1, \dots, N-1$) as:

$$MCoVaR_{t,\theta,\tau}^{\mathbf{x}_{N,t}|\mathbf{x}_{i,t}=\widehat{\mathbf{q}}_{\tau}(\mathbf{x}_{i,t})} = \widehat{\delta}_{\theta} + \sum_{\substack{j=1\\j\neq i}}^{N-1} \widehat{\lambda}_{j,\theta}\mathbf{x}_{j,t} + \widehat{\lambda}_{i,\theta}\widehat{\mathbf{q}}_{\tau}(\mathbf{x}_{i,t}) + \widehat{\boldsymbol{\phi}}_{\theta}\mathbf{F}_{t}' + \widehat{\boldsymbol{\gamma}}_{\theta}\mathbf{M}_{t-1}',$$

and obtain the \triangle MCoVaR as:

$$\Delta \textit{MCoVaR}_{\theta}^{\textit{X}_{N}|\textit{X}_{i}} = \widehat{\lambda}_{i,\theta} \left[\widehat{q}_{\tau}(\textit{x}_{i,t}) - \widehat{q}_{1/2}(\textit{x}_{i,t}) \right].$$

L1 and L2 Norms

Term Structure of Redenomination Risk Spillovers: France (I/II)

Figure: Model #1

RESPONSE: FRANCE (DOLLAR REDENOMINATION PREMIUM)

(a) CURRENCY (CRP) AND EURO (ERP) REDENOMINATION PREMIUM OF THE CONDITIONING SOVEREIGNS

Term Structure of Default Premium Spillovers: France (II/II)

Figure: Model #2

RESPONSE: FRANCE (CDS SPREAD, CR, USD)

(b) CURRENCY (CRP) AND EURO (ERP) REDENOMINATION PREMIUM OF THE CONDITIONING SOVEREIGNS

Term Structure of Redenomination Risk Spillovers: Germany (I/II)

Figure: Model #1

RESPONSE: GERMANY (DOLLAR REDENOMINATION PREMIUM)

(a) CURRENCY (CRP) AND EURO (ERP) REDENOMINATION PREMIUM OF THE CONDITIONING SOVEREIGNS

Term Structure of Default Premium Spillovers: Germany (II/II)

Figure: Model #2

RESPONSE: GERMANY (CDS SPREAD, CR, USD)

(b) CURRENCY (CRP) AND EURO (ERP) REDENOMINATION PREMIUM OF THE CONDITIONING SOVEREIGNS