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Laurent SIMULA 3

Uppsala Center for Fiscal Studies & Department of Economics, Uppsala University

Alain TRANNOY 4.
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We investigate how potential tax-driven migrations modify the Mirrlees income tax schedule when
two countries play Nash. The social objective is the maximin and preferences are quasilinear
in consumption. Individuals differ both in skills and migration costs, which are continuously
distributed. We derive the optimal marginal income tax rates at the equilibrium, extending the
Diamond-Saez formula. We show that the level and the slope of the semi-elasticity of migration
(on which we lack empirical evidence) are crucial to derive the shape of optimal marginal income
tax.
JEL Classification: D82, H21, H87
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I. INTRODUCTION

The globalization process has not only made the mobility of capital easier. The transmission of
ideas, meanings and values across national borders associated with the decrease in transportation
costs has also reduced the barriers to international labor mobility. In this context, individuals are
more likely to vote with their feet in response to high income taxes. This is in particular the case
for highly skilled workers, as recently emphasized by Liebig et al. (2007), Kleven et al. (2013) and
Kleven et al. (2014). Consequently, the possibility of tax-driven migrations appears as an important
policy issue and must be taken into account as a salient constraint when thinking about the design
of taxes and benefits affecting households.

The goal of this article is to cast light on this issue from the viewpoint of optimal tax theory.
We investigate in what respects potential migrations affect the nonlinear income tax schedules
that competing governments find optimal to implement in a Nash equilibrium. For this purpose,
we consider the archetypal case of two countries between which individuals are free to move. We
extend the model of Mirrlees (1971) to this setting and highlight the impact of potential migrations.
By assumption, taxes can only be conditioned on income and are levied according to the residence
principle.

The migration margin differs from the “usual” extensive margin because it intrinsically is asso-
ciated with competition. In contrast, many papers have investigated the extensive margin where
agents decide whether or not to work, either in isolation as in Laroque (2005) or in combination
with an intensive choice as in Saez (2002), Jacquet et al. (2013) or Kleven et al. (2009). The pos-
sibility that individuals can move between countries shares some similarities with the mobility
between economic sectors, which is at the core of the recent analysis by Scheuer and Rothschild
(2013). However, in the latter article, agents interact with only one policymaker. Moreover, the
agents necessarily remain productive in their home economy, so that there is no specific conflict
from the policymaker’s viewpoint between the desire to maintain national income per capita and
redistribution.

To represent migration responses to taxation in a realistic way, we introduce a distribution of
migration costs at each skill level. Hence, every individual is characterized by three characteristics:
her birthplace, her skill and the cost she would incur in case of migration, the last two being private
information. As emphasized by Borjas (1999), “the migration costs probably vary among persons
[but] the sign of the correlation between costs and (skills) is ambiguous”. This is why we do not
make any assumption on the correlation between skills and migration costs. Individuals make
decisions along two margins. The choice of taxable income operates on the intensive margin,
whereas the location choice operates on the extensive margin. In accordance with Hicks’s idea,
an individual decides to move abroad if her indirect utility in her home country is lower than her
utility abroad net of her migration costs. To make the analysis more transparent, we assume away
income effects on labor supply as in Diamond (1998) and consider the most redistributive social
objective (maximin). Absent mobility, the optimal marginal tax rates under the maximin are the
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largest implementable ones.1 We therefore expect that the effect of migration will be maximum
under this criterion.

Because of the combination of asymmetric information and potential migration, each govern-
ment has to solve a self-selection problem with random participation à la Rochet and Stole (2002).
Intuitively, each government faces a trade-off between three conflicting objectives: (i) redistribut-
ing incomes to achieve a fairer allocation of resources; (ii) limiting the variations of the tax liability
with income to reduce marginal tax rates, thereby prevent distortions along the intensive margin;
(iii) minimizing the distortions along the extensive margin to avoid a too large leakage of taxpay-
ers. An additional term appears in the optimal marginal tax rate formula to take the third objec-
tive into account. This term depends on the semi-elasticity of migration, defined as the percentage
change in the mass of taxpayers of a given skill level when their consumption is increased by one
unit. Our main message is that the shape of the tax function depends on the slope of the semi-elasticity,
which cannot be deduced from the slope of the elasticity. Our theoretical analysis calls for a change of
focus in the empirical analysis: in an open economy, if one wants to say something about the shape
of tax function, one needs to estimate the profile of the semi-elasticity of migration with respect to
earning capacities. We now articulate this main message with the main findings of the paper.

We first characterize the best-response of each policymaker and obtain a simple formula for the
optimal marginal tax rates. The usual optimal tax formula obtained by Piketty (1997), Diamond
(1998) and Saez (2001) for a closed economy is augmented by a “migration effect”. When the
marginal tax rates are slightly increased on some income interval, everyone with larger income
faces a lump-sum increase in taxes. This reduces the number of taxpayers in the given country.
The magnitude of this new effect is proportional to the semi-elasticity of migration.

Second, we provide a full characterization of the overall shape of the tax function. When the
semi-elasticity of migration is constant along the skill distribution, the tax function is increasing.
This situation is for example obtained in a symmetric equilibrium when skills and migration costs
are independently distributed, as assumed by Morelli et al. (2012) and Blumkin et al. (2012). A
similar profile is obtained when the semi-elasticity of migration is decreasing in skills, because
for example of a constant elasticity of migration. When the semi-elasticity is increasing, the tax
function may be either increasing, with positive marginal tax rates, or hump-shaped, with neg-
ative marginal tax rates in the upper part of the income distribution. A sufficient condition for
the hump-shaped pattern is that the semi-elasticity becomes arbitrarily large in the upper part of
the skill distribution. If this is the case, progressivity of the optimal tax schedule does not only
collapse because of tax competition; the tax liability itself becomes strictly decreasing. There are
then “middle-skilled” individuals who pay higher taxes than top-income earners. A situation that
can be seen as a “curse of the middle-skilled” (Simula and Trannoy, 2010).

Third, we numerically illustrate that the slope is as important as the level of the semi-elasticity,
even when one focuses on the upper part of the income distribution. To make this point, we
consider three economies, with an income distribution based on that of the US, which only differ

1See Boadway and Jacquet (2008) for a study of the optimal tax scheme under the maximin in the absence of individ-
ual mobility.
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by the profile of the migration responses. More specifically, the average elasticity of migration
within the top percentile is the same in all of them. We take this number from the study by Kleven
et al. (2014). However, we consider different plausible scenarios for the slope of the semi-elasticity.
We obtain dramatically different optimal tax schedules. Obtaining an estimate of the profile of the
semi-elasticity is therefore essential to make public policy recommendations.

The article is organized as follows. Section II reviews the literature which is related to this
paper. Section III sets up the model. Section IV derives the optimal tax formula in the Nash equi-
librium. Section V shows how to sign the optimal marginal tax rates and provides some further
analytical characterization of the whole tax function. Section VI numerically investigates the sen-
sitivity of the tax function to the slope of the semi-elasticity of migration. Section VII concludes.

II. RELATED LITERATURE

We can distinguish two phases in the literature devoted to optimal income taxation in an open
economy. In Mirrlees (1971) seminal paper, migrations are supposed to be impossible. However,
Mirrlees emphasizes that this is an assumption one would rather not make because the threat of
migration has probably a major influence on the degree of progressivity of actual tax systems. Mir-
rlees (1982) and Wilson (1980, 1982a) are the first to relax this assumption. Mirrlees (1982) assumes
that incomes are exogenously given and derives a tax formula à la Ramsey, the optimal average
tax being inversely proportional to the elasticity of migration. Leite-Monteiro (1997) considers the
same framework, with differentiated lump-sum taxes and two countries, and shows that tax com-
petition may result in more redistribution in one of the countries. Wilson (1980, 1982a) considers
the case of a linear tax. Osmundsen (1999) is the first to apply contract theory with type-dependent
outside options to the issue of optimal income taxation in an open economy. He studies how highly
skilled individuals distribute their working time between two countries. However, there is no in-
dividual trade-off between consumption and effort along the intensive margin.

A second generation of articles investigates optimal nonlinear income tax models in an open
economy with the main ingredients that matter, i.e. asymmetric information, intensive choice of
effort, migration costs and location choice. Among them, Hamilton and Pestieau (2005), Piaser
(2007) and Lipatov and Weichenrieder (2012) consider tax competition on nonlinear income tax
schedules in the two-type model of Stiglitz (1982). However, in a two-type setting, the possibility
of countervailing incentives is ruled out by assumption. This is one of the reasons why Morelli et al.
(2012) and Bierbrauer et al. (2013) consider more than two types. Brewer et al. (2010), Simula and
Trannoy (2010, 2011) and Blumkin et al. (2012) consider tax competition over nonlinear income tax
schedules in a model with a continuous skill distribution. Thanks to the continuous population,
it is possible to have insights into the marginal tax rates over the whole income range. Brewer
et al. (2010) find that top marginal tax rates should be strictly positive under a Pareto unbounded
skill distribution and derive a simple formula to compute them. In contrast, Blumkin et al. (2012)
find that top marginal tax rates should be zero. Our article makes clear that this discrepancy
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arises because Brewer et al. (2010) assume that the elasticity of migration is constant in the upper
part of the income distribution. This implies that the semi-elasticity is decreasing. Blumkin et al.
(2012) conversely assume that the skills and migration costs are independently distributed. This
implies that the semi-elasticity of migration is constant and, thus, that the asymptotic elasticity
of migration is infinite. So, the asymptotic marginal tax rate is zero. This is also the case in the
framework considered by Bierbrauer et al. (2013). Two utilitarian governments compete when
labor is perfectly mobile whatever the skill level. They show that there does not exist equilibria in
which individuals with the highest skill pay positive taxes to either country. In our model, there
will be some perfectly mobile agents at each skill level. This feature makes our symmetric Nash
equilibrium different from the autarkic solution. However, there will also be agents with strictly
positive migration costs. Finally, Simula and Trannoy (2010, 2011) assume that there is a single
level of migration cost per skill level. There is thus a skill level below which the semi-elasticity
of migration is zero and above which it is infinite. This is the reason why Simula and Trannoy
(2010) find that marginal tax rates may be negative in the upper part of the income distribution.
The present article proposes a general framework that encompasses all previous studies.

III. MODEL

We consider an economy consisting of two countries, indexed by i = A, B. The same constant-
return to scales technology is available in both countries. Each worker is characterized by three
characteristics: her native country i ∈ {A, B}, her productivity (or skill) w ∈ [w0, w1], and the mi-
gration cost m ∈ R+ she supports if she decides to live abroad. Note that w1 may be either finite or
infinite and w0 is non-negative. In addition, the empirical evidence that some people are immobile
is captured by the possibility of infinitely large migration costs. This in particular implies that there
will always be a mass of natives of skills w0 in each country.2 The migration cost corresponds to a
loss in utility, due to various material and psychic costs of moving: application fees, transportation
of persons and household’s goods, forgone earnings, costs of speaking a different language and
adapting to another culture, costs of leaving one’s family and friends, etc.3 We do not make any
restriction on the correlation between skills and migration costs. We simply consider that there is
a distribution of migration costs for each possible skill level.

We denote by hi(w) the continuous skill density in country i = A, B, by Hi(w) ≡
∫ w

w0
hi (x) dx

the corresponding cumulative distribution function (CDF) and by Ni the size of the population.
For each skill w, gi (m |w ) denotes the conditional density of the migration cost and Gi (m |w ) ≡∫ m

0 gi (x |w ) dx the conditional CDF. The initial joint density of (m, w) is thus gi (m|w) hi(w) whilst
Gi (m |w ) hi (w) is the mass of individuals of skill w with migration costs lower than m.

2We could instead assume that m ∈ [0, m] but this would only complicate the analysis. In particular, we might have
to deal with the possibilities of “exclusion” of consumer types (namely, a government trying to make its poor emigrate),
as typical in the nonlinear price competition literature. In our optimal tax setting, this possibility of exclusion would
raise difficult ethical issues, that we prefer to avoid.

3Alternatively, the cost of migration can be regarded as the costs incurred by cross-border commuters, who still
reside in their home country but work across the border.
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Following Mirrlees (1971), the government does not observe individual types (w, m). More-
over, it is constrained to treat native and immigrant workers in the same way.4 Therefore, it can
only condition transfers on earnings y through an income tax function Ti(·). It is unable to base
the tax on an individual’s skill level w, migration cost m, or native country.

III.1. Individual Choices

Every worker derives utility from consumption c, and disutility from effort and migration, if any.
Effort captures the quantity as well as the intensity of labor supply. The choice of effort corresponds
to an intensive margin and the migration choice to an extensive margin. Let v(y; w) be the disutility
of a worker of skill w to obtain pre-tax earnings y ≥ 0 with v′y > 0 > v′w and v′′yy > 0 > v′′yw. Let 1
be equal to 1 if she decides to migrate, and to zero otherwise. Individual preferences are described
by the quasi-linear utility function:

(1) c− v(y; w)− 1 ·m.

Note that the Spence-Mirrlees single-crossing condition holds because v′′yw < 0. The quasi-linearity
in consumption implies that there is no income effect on taxable income and appears as a reason-
able approximation. For example, Gruber and Saez (2002) estimate both income and substitution
effects in the case of reported incomes, and find small and insignificant income effects. The cost of
migration is introduced in the model as a monetary loss.

Intensive Margin

We focus on income tax competition under the residence principle. Everyone living in country
i is liable to an income tax Ti(·), which is solely based on earnings y ≥ 0, and thus in partic-
ular independent of the native country. Because of the separability of the migration costs, two
individuals living in the same country and having the same skill level choose the same gross in-
come/consumption bundle, irrespective of their native country. Hence, a worker of skill w, who
has chosen to work in country i, solves:

(2) Ui (w) ≡ max
y

y− Ti (y)− v (y; w) .

We call Ui(w) the gross utility of a worker of skill w in country i. It is the net utility level for a native
and the utility level absent migration cost for an immigrant. We call Yi(w) the solution to program
(2) and Ci(w) = Yi(w)− T (Yi(w)) the consumption level of a worker of skill w in country i.5 The

4In several countries, highly skilled foreigners are eligible to specific tax cuts for a limited time duration. This is for
example the case in Sweden and in Denmark. These exemptions are temporary.

5If (2) admits more than one solution, we make the tie-breaking assumption that individuals choose the one preferred
by the government.
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first-order condition can be written as:

(3) 1− T′i (Yi(w)) = v′y (Yi(w); w) .

Differentiating (3), we obtain the elasticity of gross earnings with respect to the retention rate
1− T′i ,

(4) ε i (w) ≡
1− T′i (Yi(w))

Yi(w)

∂Yi(w)

∂
(
1− T′i (Yi(w))

) =
v′y (Yi(w); w)

Yi(w) v′′yy (Yi(w); w)
,

and the elasticity of gross earnings with respect to productivity w:

(5) αi (w) ≡ w
Yi(w)

∂Yi(w)

∂w
= −

w v′′yw (Yi(w); w)

Yi(w) v′′yy (Yi(w); w)
.

Migration Decisions

A native of country A of type (w, m) gets utility UA(w) if she stays in A and utility UB(w)−m if she
relocates to B. She therefore emigrates if and only if: m < UB(w)−UA(w). Hence, among individ-
uals of skill w born in country A, the mass of emigrants is given by GA (UB(w)−UA(w) |w ) hA(w) NA

and the mass of agents staying in their native country by (1− GA (UB(w)−UA(w) |w )) hA(w) NA.
Natives of country B behave in a symmetric way.

Combining the migration decisions made by agents born in the two countries, we see that
the mass of residents of skill w in country A, denoted ϕA (UA(w)−UB(w); w), depends on the
difference in the gross utility levels ∆ = UA(w)−UB(w), with:

(6) ϕi (∆; w) ≡
{

hi(w) Ni + G−i(∆|w) h−i(w) N−i when ∆ ≥ 0,
(1− Gi(−∆|w)) hi(w) Ni when ∆ ≤ 0.

We impose the technical restriction that gA(0|w)hA(w)NA = gB(0|w)hB(w)NB to ensure that ϕi(·; w)

is differentiable. This restriction is automatically verified when A and B are symmetric or when
there is a fixed cost of migration, implying gi(0|w) = 0. We have:

∂ϕi(·; w)

∂∆
=

{
g−i(∆|w) h−i(w) N−i when ∆ ≥ 0,
gi(−∆|w) hi(w) Ni when ∆ ≤ 0.

Hence, ϕi(·; w) is increasing in the difference ∆ in the gross utility levels. By symmetry, the mass
of residents of skill w in country B is given by ϕB (UB(w)−UA(w); w).

All the responses along the extensive margin can be summarized in terms of elasticity concepts.
We define the semi-elasticity of migration in country i as:

(7) ηi (∆i(w); w) ≡ ∂ϕ(∆i(w); w)

∂∆
1

ϕ(∆i(w); w)
with ∆i(w) = Ui(w)−U−i(w).
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Because of quasi-linearity in consumption, this semi-elasticity corresponds to the percentage change
in the density of taxpayers with skill w when their consumption Ci (w) is increased at the margin.
The elasticity of migration is defined as:

(8) νi (∆i(w); w) ≡ Ci (w)× η (∆i(w), w) .

In words, (8) means that if the consumption of the agents of skill w is increased by 1% in country
i, the mass of taxpayers with this skill level in country i will change by νi (∆i(w); w)%. Defining
the elasticity by multiplying by Ci(w) instead of ∆i(w) will pay dividends in terms of ease of
exposition later.

III.2. Governments

In country i = A, B, a benevolent policymaker designs the tax system to maximize the welfare
of the worst-off individuals. We chose a maximin criterion for several reasons. The maximin tax
policy is the most redistributive one, as it corresponds to an infinite aversion to income inequality.
A first motivation is therefore to explore the domain of potential redistribution in the presence
of tax competition. A second motivation is that in an open economy, there is no obvious way of
specifying the set of agents whose welfare is to count (Blackorby et al., 2005). The policymaker may
care for the well-being of the natives, irrespective of their country of residence. Alternatively, it
may only account for the well-being of the native taxpayers, or for that of all taxpayers irrespective
of native country. As an economist, there is no reason to favor one of these criteria (Mirrlees, 1982).
In our framework and in a second-best setting, all these criteria are equivalent. This provides an
additional reason for considering maximin governments. The budget constraint faced by country
i’s government is:

(9)
∫ w1

w0

Ti (Y (w)) ϕi(Ui(w)−U−i(w); w) dw ≥ E

where E ≥ 0 is an exogenous amount of public expenditures to finance.6

IV. OPTIMAL TAX FORMULA

Following Mirrlees (1971), the standard optimal income tax formula provides the optimal marginal
tax rates that should be implemented in a closed economy (e.g., Atkinson and Stiglitz (1980); Di-
amond (1998); Saez (2001)). From another perspective, these rates can also be seen as those that
should be implemented by a supranational organization (“world welfare point of view” (Wilson,

6The dual problem is to maximize tax revenues, subject to a minimum utility requirement for the worst-off individu-
als, Ui(w0) ≥ Ui(w0). In a closed economy, the dual problem gives rise to the same marginal tax rates as the Leviathan
(maximization of tax revenues without a minimum utility requirement). Indeed, a variation in the minimum utility
requirement Ui(w0) corresponds to a lump-sum transfer and does not alter the profile of marginal tax rates. This is
no longer the case in an open economy because a variation in Ui(w0) alters each Ui(w), and thus each ∆i(w), thereby
modifying the density of taxpayers.
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1982b)) or in the presence of tax cooperation. In this section, we derive the optimal marginal tax
rates when policymakers compete on a common pool of taxpayers. We investigate in which way
this formula differs from the standard one.

IV.1. Best Responses

We start with the characterization of each policymaker’s best response. Because a taxpayer in-
teracts with only one policymaker at the same time, it is easy to show that the standard taxation
principle holds. Hence, it is equivalent to choose a non-linear income tax, taking individual choices
into account, or to directly select an allocation satisfying the usual incentive-compatible constraints
Ci(w)− v(Yi(w); w) ≥ Ci(x)− v(Yi(x); w) for every (w, x) ∈ [w0, w1]

2. Due to the single-crossing
condition, these constraints are equivalent to:

U′i (w) = −v′w (Yi (w) ; w) ,(10)

Yi(·) non-decreasing.(11)

The best-response allocation of government i to government −i is therefore solution to:

max
Ui(w),Yi(w)

Ui(w0) s.t. U′i (w) = −v′w (Yi (w) ; w) and(12) ∫ w1

w0

(Yi (w)− v (Yi (w) ; w)−Ui (w)) ϕi (Ui (w)−U−i (w) ; w) dw ≥ E,

in which U−i (.) is given.7 To save on notations, we from now on drop the i-subscripts and de-
note the skill density of taxpayers and the semi-elasticity in the Nash equilibrium by f ∗(w) =

ϕi(Ui(w)−U−i(w); w) and η∗(w) = ηi(Ui(w)−U−i(w); w) respectively.

IV.2. Nash Equilibria

In Appendix A, we derive the first-order conditions for (12) and rearrange them to obtain a charac-
terization of the optimal marginal tax rates in a Nash equilibrium.8 We below provide an intuitive
derivation based on the analysis of the effects of a small tax reform perturbation around the equi-
librium.

PROPOSITION 1. In a Nash equilibrium, the optimal marginal tax rates are:

(13)
T′(Y(w))

1− T′(Y(w))
=

α(w)

ε(w)

X(w)

w f ∗(w)
,

7The government solves a similar problem as in a closed economy in which agents would also respond to taxation
along their participation margin, except that in our setting the reservation utility is exogenous to the government.

8If the solution to the relaxed program that ignores the monotonicity constraint is characterized by incomes that are
non-decreasing in skills, then this solution is also the solution to the full program that also includes the monotonicity
constraint. In a closed economy and with preferences that are concave in effort, bunching arises when there is a mass
point in the skill distribution (Hellwig, 2010). In our model, mass points are ruled out by assumption. Moreover, in our
simulations, bunching was never optimal.
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with

(14) X(w) =
∫ w1

w
[1− η∗(x) T (Y(x))] f ∗(x) dx.

Our optimal tax formula (13) differs from the one derived by Piketty (1997), Diamond (1998)
and Saez (2001) for a closed economy in two ways: on the one hand, the mass of taxpayers f ∗(·)
naturally replaces the initial density of skills and, on the other hand, η∗(·) T(Y(·)) appears in the
expectation term X(w). The starred terms capture the competitive nature of Nash equilibrium.9

Proposition 1 – and all other results – hold in the absence of symmetry. The symmetric case
where the two countries are identical (NA = NB, hA(·) = hB(·) = h(·) and gA(·|w) = gB(·|w) =

g(·|w)) is however particularly interesting. Indeed, both countries then implement the same policy,
which implies UA(w) = UB(w). Then, in the equilibrium, no one actually moves but the tax
policies differ from the closed-economy ones because of the threat of migration. The skill density
of taxpayers f ∗(·) is therefore equal to the exogenous skill density h(·) whilst (7) implies that the
semi-elasticity of migration reduces to the structural parameter g(0|·). Obviously, if g(0|w) ≡ 0 for
all skill levels, the optimal fiscal policy coincides with the optimal tax policy in a closed economy.
For instance, this is the case when migration costs include a fixed-cost component. However, in
practice, countries are asymmetric and the semi-elasticity is positive as long as the difference in
utility in the two countries is larger than the lower bound of the support of the distribution of
migration costs. The main difference is that for asymmetric countries the mass of taxpayers f ∗(·)
and the semi-elasticity of migration η∗(·) are both endogenous.

IV.3. Interpretation

We now give an intuitive proof which in particular clarifies the economic interpretation of X(w).
To this aim, we investigate the effects of a small tax reform in a unilaterally-deviating country:
the marginal tax rate T′(Y(w)) is uniformly increased by a small amount ∆ on a small interval
[Y(w)− δ, Y(w)] as shown in Figure I. Hence, tax liabilities above Y(w) are uniformly increased
by ∆ δ. This gives rise to the following effects.

First, an agent with earnings in [Yi(w)− δ, Yi(w)] responds to the rise in the marginal tax rate
by a substitution effect. From (4), the latter reduces her taxable income by:

dY(w) =
Y(w)

1− T′ (Y(w))
ε(w) ∆.

This decreases the taxes she pays by an amount:

dT (Y(w)) = T′ (Y(w)) dY(w) =
T′ (Y(w))

1− T′ (Y(w))
Y(w) ε(w) ∆.

9An alternative benchmark would be to look at the country-specific tax schedules that a unique tax authority would
implement, taking into account the possibilities of international migration. In such an institutional environment, the
well-being of the population would obviously be larger. However, we believe that this benchmark is - for the moment -
very idealistic and we therefore prefer to contrast our results to autarky.
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FIGURE I: SMALL TAX REFORM PERTURBATION

Taxpayers with income in [Yi(w)− δ, Yi(w)] have a skill level within the interval [w− δw, w] of the
skill distribution. From (5), the widths δ and δw of the two intervals are related through:

δw =
w

Y(w)

1
α(w)

δ.

The mass of taxpayers whose earnings are in the interval [Yi(w)− δ, Yi(w)] being δw f ∗(w), the total
substitution effect is equal to:

(15) dT (Y(w)) δw f ∗(w) =
T′ (Y(w))

1− T′ (Y(w))

ε(w)

α(w)
w f ∗(w) ∆ δ.

Second, every individual with skill x above w faces a lump-sum increase ∆δ in her tax liability.
In the absence of migration responses, this mechanically increases collected taxes from those x-
individuals by f ∗(x)∆ δ. This is referred to as the “mechanical” effect in the literature. However, an
additional effect takes place in the present open-economy setting. The reason is that the unilateral
rise in tax liability reduces the gross utility in the deviating country, compared to its competitor.
Consequently, the number of emigrants increases or the number of immigrants decreases. From
(7), the number of taxpayers with skill x decreases by η∗(x) f ∗(x) ∆ δ, and thus collected taxes are
reduced by:

(16) η∗(x) T (Y(x)) f ∗(x) δ ∆

We define the tax liability effect X(w) δ ∆ as the sum of the mechanical and migration effects for all
skill levels x above w, where X(w) – defined in (14) – is the intensity of the tax liability effects for
all skill levels above w.

The unilateral deviation we consider cannot induce any first-order effect on the tax revenues of
the deviating country; otherwise the policy in the deviating country would not be a best response.
This implies that the substitution effect (15) must be offset by the tax liability effect X(w) δ ∆. We
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thus obtain Proposition 1’s formula.
An alternative way of writing formula (13) illuminates the relationship between the marginal

and the average optimal tax rates, and captures the long-held intuition that migration is a response
to average tax rates. Using the definition of the elasticity of migration, we obtain:

(17)
T′ (Y (w))

1− T′ (Y (w))
=

α (w)

ε (w)

1− F∗ (w)

w f ∗ (w)

[
1−E∗f

(
T (Y (x))

Y (x)− T (Y (x))
ν0 (x) |x ≥ w

)]
.

We see that the new “migration factor” makes the link between the marginal tax rate at a given w
and the mean of the average tax rates above this w. More precisely, it corresponds to the weighted
mean of the average tax rates T(Y(x))

Y(x)−T(Y(x)) weighted by the elasticity of migration ν0(x), for ev-
eryone with productivity x above w. The reason is that migration choices are basically driven by
average tax rates, instead of the marginal tax rates.

V. THE PROFILE OF THE OPTIMAL MARGINAL TAX RATES

It is trivial to show that the optimal marginal tax rate is equal to zero at the top if skills are bounded
from above. It directly follows from (17) computed at the upper bound. We also find that the
optimal marginal tax rate at the bottom is non negative.10 Our contribution is to characterize the
overall shape of the tax function, and thus of the entire profile of the optimal marginal tax rates.

The second-best solution is potentially complicated because it takes both the intensive labor
supply decisions and the location choices into account. To derive qualitative properties, we follow
the method developed by Jacquet et al. (2013) and start by considering the same problem as in the
second best, except that skills w are common knowledge (migration costs m remain private infor-
mation). We call this benchmark the Tiebout best, as a tribute to Tiebout’s seminal introduction of
migration issues in the field of public finance.

V.1. The “Tiebout Best” as a Useful Benchmark

In the Tiebout best, each government faces the same program as in the second best but without the
incentive-compatibility constraint (10):

max
Ui(w),Yi(w)

Ui(w0)

s.t.
∫ w1

w0

(Yi (w)− v (Yi (w) ; w)−Ui (w)) ϕ (Ui (w)−U−i (w) ; w) dw ≥ E,
(18)

The first-order condition with respect to gross earnings v′ (Y(w); w) = 1 highlights the fact that
there is no need to implement distortionary taxes given that skills w are observable. Therefore,
a set of skill-specific lump-sum transfers T̃i(w) decentralizes the Tiebout best. We now consider
the optimality condition with respect to U(w). Because preferences are quasilinear in consump-

10Indeed, in (13), the effect of a lump-sum increase in the tax liability of the least skilled agents is given by X(w0).
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tion, increasing utility U(w) by one unit for a given Y(w) amounts to giving one extra unit of
consumption, i.e. to decreasing T̃i(w) by one unit. In the policymaker’s program, the only effect
of such a change is to tighten the budget constraint. In the Tiebout best, the f ∗(w) workers’ taxes
are reduced by one unit. However, the number of taxpayers with skill w increases by η∗(w) f ∗(w)

according to (7), each of these paying T̃i(w). In the Tiebout best, the negative migration effect of
an increase in tax liability fully offsets the positive mechanical effect, implying:

(19) T̃i(w) =
1

η∗(w)
.

The tax liability T̃i(w) required from the residents with skill w > w0 is equal to the inverse of their
semi-elasticity of migration η∗i (w). The least productive individuals receive a transfer determined
by the government’s budget constraint. Therefore, the optimal tax function is discontinuous at
w = w0, as illustrated in Figures 2 – 5. We can alternatively express the best response of country i’s
policymaker using the elasticity of migration instead of the semi-elasticity. We recover the formula
derived by Mirrlees (1982):

(20)
T̃i(w)

Yi(w)− T̃i(w)
=

1
ν(∆i; w)

.

Combining best responses, we easily obtain the following characterization for the Nash equilib-
rium in the Tiebout best. We state it as a proposition because it provides a benchmark to sign
second-best optimal marginal tax rates.

PROPOSITION 2. In a Nash equilibrium equilibrium, the Tiebout-best tax liabilities are given by
(19) for every w > w0, with an upwards jump discontinuity at w0.

V.2. Signing Optimal Marginal Tax Rates

The Tiebout-best tax schedule provides insights into the second-best solution, where both skills
and migration costs are private information. Using (19), Equation (14) can be rewritten as:

X(w) =
∫ w1

w

[
T̃(x)− T (Y(x))

]
η∗(x) f ∗(x) dx.(21)

We see that the tax level effect X(w) is a weighted sum of the difference between the Tiebout-
best tax liabilities and second-best tax liabilities for all skill levels x above w. The weights are
given by the product of the semi-elasticity of migration and the skill density, i.e. by the mass
of pivotal individuals of skill w, who are indifferent between migrating or not. In the Tiebout
best, the mechanical and migration effects of a change in tax liabilities cancel out. Therefore, the
Tiebout-best tax schedule defines a target for the policymaker in the second best, where distortions
along the intensive margin have also to be minimized. The second-best solution thus proceeds
from the reconciliation of three underlying forces: i) maximizing the welfare of the worst-off; ii)
being as close as possible to the Tiebout-best tax liability to limit the distortions stemming from
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the migration responses; iii) being as flat at possible to mitigate the distortions coming from the
intensive margin. These three goals cannot be pursued independently because of the incentive
constraints (10). The following proposition is established in Appendix B, but we below provide
graphs that cast light on the main intuitions. We consider the case of purely redistributive tax
policies (E = 0).

PROPOSITION 3. Let E = 0. In a Nash equilibrium:

i) if η∗′(·) = 0, then T′(Y(w)) > 0 and T(Y(w)) < 1/η∗ for all w ∈ (w0, w1);

ii) if η∗′(·) < 0, then T′(Y(w)) > 0 for all w ∈ (w0, w1);

iii) if η∗′(·) > 0, then either

(a) T′(Y(w)) ≥ 0 for all w ∈ (w0, w1);

(b) or there exists a threshold w̆ ∈ [w0, w1) such that T′(Y(w)) ≥ 0 for all w ∈ (w0, w̆) and
T′(Y(w)) < 0 for all w ∈ (w̆, w1).

iv) if η∗′(·) > 0 and lim
w→∞

η∗(w) = +∞, then there exists a threshold w̆ ∈ (w0, w1) such that
T′(Y(w)) ≥ 0 for all w ∈ (w0, w̆) and T′(Y(w)) < 0 for all w ∈ (w̆, w1).

This proposition casts light on the part played by the slope of the semi-elasticity of migration.
It considers the three natural benchmarks that come to mind when thinking about it. First, the
costs of migration may be independent of w as in Blumkin et al. (2012) and Morelli et al. (2012),
implying a constant semi-elasticity in a symmetric equilibrium. This makes sense, in particular, if
most relocation costs are material (moving costs, flight tickets, etc.).11 Second, one might want to
consider a constant elasticity of migration, as in Brewer et al. (2010) and Piketty and Saez (2012). In
this case, the semi-elasticity must be decreasing: if everyone receives one extra unit of consumption
in country i, then the relative increase in the number of taxpayers becomes smaller for more skilled
individuals. Third, the costs of migration may be decreasing in w. This seems to be supported by
the empirical evidence that highly skilled are more likely to emigrate than low skilled (Docquier
and Marfouk, 2006). This suggests that the semi-elasticity of migration may be increasing in skills.
A special case is investigated in Simula and Trannoy (2010,2011) , with a semi-elasticity equal to
zero up to a threshold and infinite above.

The case of a constant semi-elasticity of migration is illustrated in Figure II. The dashed line
represents the “Tiebout target” given by Equation (19). It consists of a constant tax level, equal
to at 1/η∗ > 0 for all w > w0 and redistributes the obtained collected taxes to workers of skill
w0. It is therefore negative at w0 and then jumps upwards to a positive value 1/η∗ > 0 for every
w > w0. The solid line corresponds to the Nash-equilibrium tax schedule in the second best. A
flat tax schedule, with T(Y(w)) ≡ 1/η∗(w), would maximize tax revenues and avoid distortions

11Morelli et al. (2012) compare a unified nonlinear optimal taxation with the equilibrium taxation that would be
chosen by two competing tax authorities if the same economy were divided into two States. In their conclusion, they
discuss the possible implications of modifying this independence assumption and consider that allowing for a negative
correlation might be more reasonable.
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along the intensive margin. It would however not benefit to workers of skill w0. Actually, the
laissez-faire policy with T(Y) ≡ 0, which is feasible because E = 0, would provide workers of skill
w0 with a higher utility level. Consequently, the best compromise is achieved by a tax schedule
that is continuously increasing over the whole skill distribution, from a negative value – so that
workers of skill w0 receive a net transfer – to positive values that converge to the Tiebout target
1/η∗ from below. In particular, implementing a negative marginal tax rate at a given w would just
make the tax liabilities of the less skilled individuals further away from the Tiebout target, thereby
reducing the transfer to the w0-individuals.

T(Y(w))

w0
Optimal schedule

Tiebout target: T(Y(w))=1/

FIGURE II: CONSTANT SEMI-ELASTICITY OF MIGRATION

The case of a decreasing semi-elasticity of migration is illustrated in Figure III. The Tiebout tar-
get is thus increasing above w0. This reinforces the rationale for having an increasing tax schedule
over the whole skill distribution in the second best.

T(Y(w))

w0

Tiebout target: T(Y(w))=1/(w)

Optimal schedule

FIGURE III: DECREASING SEMI-ELASTICITY OF MIGRATION

The case of an increasing semi-elasticity of migration is illustrated in Figure IV. The Tiebout
target is now decreasing for w > w0. To provide the workers of skill w0 with a net transfer, the tax
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schedule must be negative at w0. It then increases to get closer to the Tiebout target. This is why
marginal tax rates must be positive in the lower part of the skill distribution. As shown in Figure
4, two cases are possible for larger w. In case a), the tax schedule is always slowly increasing, to get
closer to the Tiebout target, as skill increases. The optimal marginal tax rates are therefore always
positive. In case b), the Tiebout target is so decreasing that once the optimal tax schedule becomes
close enough to the Tiebout target, it becomes decreasing in skills so as to remain close enough to
the target.

T(Y(w))

w0

Tiebout target: T(Y(w))=1/(w)

Optimal schedule: case a)

Optimal schedule: case b)

FIGURE IV: INCREASING SEMI-ELASTICITY OF MIGRATION

When the semi-elasticity of migration tends to infinity, the target converges to 0 as skill goes up.
Consequently, the optimal tax schedule cannot remain below the target and only case b) can occur,
as illustrated in Figure 5.

T(Y(w))

w0

Optimal schedule

Tiebout target: T(Y(w))=1/(w)

FIGURE V: INCREASING SEMI-ELASTICITY OF MIGRATION, CONVERGING TO INFINITY
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V.3. Asymptotic Properties

First, the studies by Brewer et al. (2010) and Piketty and Saez (2012) can be recovered as special
cases of our analysis. The latter look at the asymptotic marginal tax rate given potential migra-
tion. They assume that the elasticity of migration is constant, equal to ν. From Equation (8), a
constant elasticity of migration is a special case of a decreasing semi-elasticity, because C(w) must
be non-decreasing in the second best. They also assume that the elasticities ε(w), α(w) converge
asymptotically to ε and α respectively. They finally assume that the distribution of skills is Pareto
in its upper part, so that (w f ∗(w))/(α(w)(1 − F∗(w))) asymptotically converges to k. Making
skill w tends to infinity in the optimal tax formula (17), we retrieve their formula for the optimal
asymptotic marginal tax rate:12

(22) T′(Y(∞)) =
1

1 + kε + ν
.

We see that the asymptotic marginal tax rate is then strictly positive. For example, if k = 1.5,
ε = 0.25 and ν = 0.25, we obtain T′(Y(∞)) = 61.5% instead of 72.7% in the absence of migration
responses. Note that when migration costs and skills are independently distributed and the skill
distribution is unbounded, as assumed by Blumkin et al. (2012), the elasticity of migration tends
to infinity according to (8). In this case, the asymptotic optimal marginal tax rate is equal to zero.
The result of a zero asymptotic marginal tax obtained by Blumkin et al. (2012) is thus a limiting
case of Piketty and Saez (2012).

Second, one may wonder whether the optimal tax schedule must converge asymptotically to
the Tiebout target, as suggested in Figure II for the case of a constant elasticity of migration.13 We
can however provide counter-examples where this is not the case. For instance, when the skill
distribution is unbounded and approximated by a Pareto distribution, and when the elasticity of
migration converges asymptotically to a constant value ν0, the optimal tax schedule converges to
an asymptote that increases at a slope given by the optimal asymptotic marginal tax rate provided
by Piketty’s and Saez’s (2012) formula. Conversely, the Tiebout target is given by (20). The Tiebout
target therefore converges to an asymptote that increases at a pace 1/(1 + ν0), which is larger than
the asymptotic optimal marginal tax rate. The two schedules must therefore diverge when the skill
level tend to infinity.

V.4. Discussion

Proposition 3 shows that the slope of the semi-elasticity of migration is crucial to derive the shape
of optimal income tax. According to (8), even under the plausible case where the elasticity of
migration is increasing over the skill distribution, the semi-elasticity may be either decreasing or
increasing, depending on whether the elasticity of migration is increasing at a lower or higher

12By L’Hôpital’s rule, lim
w 7→w1

T(Y(w))

Y(w)− T(Y(w))
= lim

w 7→w1

T′(Y(w))

1− T′(Y(w))
.

13In this case, when the skill distribution is unbounded, Blumkin et al. (2012) show that the tax liability converges to
the Tiebout target (that they call the “Laffer tax”) when the skill increases to infinity.
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pace than consumption. In the former case, the optimal tax schedule is increasing and the optimal
marginal tax rates are positive everywhere. In the latter case, the optimal tax schedule may be
hump-shaped and optimal marginal tax rates may be negative in the upper part of the skill distri-
bution. Therefore, the qualitative features of the optimal tax schedule may be very different, even
with a similar elasticity of migration in the upper part of the skill distribution. This point will be
emphasized by the numerical simulations of the next section.

One may wonder why this is the slope of the semi-elasticity of migration and not that of the
elasticity that matters in Proposition 3. This is because the distortions along the intensive margin
depend on whether marginal tax rates are positive or negative, i.e. on whether the optimal tax
liability is increasing or decreasing. Consequently, the second-best optimal tax schedule inher-
its the qualitative properties of the Tiebout-best solution, in which tax liabilities are equal to the
inverse of the semi-elasticity of migration. We see that in order to clarify how migrations affect
the optimal tax schedule, it is not sufficient to use an empirical strategy that only estimates the
level of the migration response, as estimated by Liebig et al. (2007), Kleven et al. (2013) or Kleven
et al. (2014)). Our theoretical analysis thus calls for a change of focus in the empirical analysis: in
an open economy, one needs to also estimate the profile of the semi-elasticity of migration with
respect to earning capacities.

VI. NUMERICAL ILLUSTRATION

This section numerically implements the equilibrium optimal tax formula, so as to emphasize the
part played by the slope of the semi-elasticity of migration. In particular, we illustrate the fact that
the marginal tax rates faced by rich individuals may be highly sensitive to the overall shape of this
semi-elasticity.

For simplicity, we consider that the world consists of two symmetric countries. The distribution
of the skill levels is based on the CPS data (2007) extended by a Pareto tail, so that the top 1% of
the population gets 18% of total income, as in the US. The disutility of effort is given by v(y; w) =

(y/w)1+1/ε. This specification implies a constant elasticity of gross earnings with respect to the
retention rate ε, as in Diamond (1998) and Saez (2001). We choose ε = 0.25, which is a reasonable
value based on the survey by Saez et al. (2012).

Even though the potential impact of income taxation on migration choices has been extensively
discussed in the theoretical literature, there are still few empirical studies estimating the migration
responses to taxation. A first set of studies consider the determinants of migration across US states
(see Barro and Sala-i Martin (1992); Barro and Sala-I-Martin (1991), Ganong and Shoag (2013) and
Suarez Serrato and Zidar (2013)). They find that per capita income has a positive effect on net
migration rates into a state. This conclusion is entirely compatible with an explanation based on
tax differences between US states, but may also be due to other differences (e.g., in productivities,
housing rents, amenities or public goods). Strong structural assumptions are therefore required
to disentangle the pure tax component. A second set of studies focuses exclusively on migra-
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tion responses to taxation. Liebig et al. (2007) use differences across Swiss cantons and compute
migration elasticities for different subpopulations, in particular for different groups in terms of ed-
ucation. Young and Varner (2011) use a millionaire tax specific to New Jersey. Because the salience
of this millionaire tax is limited, their estimates of the causal effect of taxation on migration are
not statistically significant, except for extremely specific subpopulations. Still, their results suggest
that the elasticity of migration is increasing in the upper part of the income distribution. Only
two studies are devoted to the estimation of migration elasticities between countries. Kleven et al.
(2013) examine tax-induced mobility of football players in Europe and find substantial mobility
elasticities. More specifically, the mobility of domestic players with respect to domestic tax rate
is rather small around 0.15, but the mobility of foreign players is much larger, around 1. Kleven
et al. (2014) confirm that these large estimates apply to the broader market of highly skilled foreign
workers and not only to football players. They find an elasticity above 1 in Denmark. In a given
country, the number of foreigners at the top is however relatively small. Hence, these findings
would translate into a global elasticity at the top of about 0.25 (see Piketty and Saez (2012)). Our
model pertains to international migrations and based on our survey of the empirical literature, we
believe that the best we can do is to use an average elasticity of 0.25 for the top 1%. Moreover,
there is no empirical evidence regarding the slope of the semi-elasticity of migration.

We therefore investigate three possible scenarios, as shown in Figure VI. In each of them,
the average elasticity in the actual economy top 1% of the population is equal to 0.25. In the
first scenario, the semi-elasticity is constant up to the top centile and then decreasing in such a
way that the elasticity of migration is constant within the top centile. In the second scenario, the
semi-elasticity is constant throughout the whole skill distribution. In the third scenario, the semi-
elasticity is zero up to the top centile and then increasing. Note that, in the three scenarios, the
elasticity of migration is non-decreasing along the skill distribution and remains finite, whilst the
semi-elasticity of migration is constant across the bottom 99% of the skill distribution. The average
elasticity in the population is higher in the first scenario (0.028) than in the second (0.013) and third
(0.003) ones.

The optimal tax liabilities and optimal marginal tax rates in the equilibrium are shown on the
the left and right panels of Figure VII respectively. The x-axis represents annual gross earnings
in millions of US dollars. In addition to the three scenarios presented above, we added the tax
schedule that would be chosen in a closed economy or in the presence of tax coordination (black
curves). Even though the average elasticity of migration is the same for the top 1% of income
earners in the three scenarios, we observe significant differences due to variations in the shape
of the semi-elasticity of migration. Moreover, the threat of migration implies a non-negligible
decrease in the total taxes paid by top income earners whilst differences in the slope of the semi-
elasticity may translate into large differences in marginal tax rates for high-income earners. These
numerical results put the stress on the need for empirical studies on the slope of the semi-elasticity
of migration, in addition to its level.

In the first case, the tax function is close to being linear for high-income earners and remains
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FIGURE VI: ELASTICITY (A) AND SEMI-ELASTICITY (B) OF MIGRATION. CASE 1 (RED), CASE 2
(PURPLE - DOTTED) AND CASE 3 (BLUE - DASHED). Y IN MILLIONS OF USD.

close to the closed-economy benchmark. In the second case, the tax function is more concave
for large incomes, but remains increasing. In the third case, the tax function becomes decreasing
around Y = $2.9 millions. In particular, the richest people are not those paying the largest taxes.
It is very striking that the largest difference in tax liabilities is observed in the third case which yet
exhibits the lowest average elasticity of migration over the total population. This illustrates the
fact that the profile of the semi-elasticity of migration within the top centile has a much stronger
impact on the optimal tax schedule than the average elasticity of migration within the bottom 99%
of the population.

VII. CONCLUDING COMMENTS

This paper characterizes the nonlinear income tax schedules that competing Rawlsian govern-
ments should implement when individuals with private information on skills and migration costs
decide where to live and how much to work. First, we obtain an optimality rule in which a mi-
gration term comes in addition to the standard formula obtained by Diamond (1998) for a closed
economy. Second, we show that the optimal tax schedule for top income earners not only de-
pends on the intensity of the migration response of this population, which has been estimated by
Liebig et al. (2007), Kleven et al. (2013) and Kleven et al. (2014), but also on the way in which the
semi-elasticity of migration varies along the skill distribution. If the latter is constant or decreas-
ing, optimal marginal tax rates are positive. Conversely, marginal tax rates may be negative if the
semi-elasticity of migration is increasing along the skill distribution. To illustrate the sensitivity
of marginal tax rates to the slope, we numerically compare three economies that are identical in
all aspects, including the average elasticity of migration among the top percentile of the distribu-
tion, except that they differ in term of the slope of the semi-elasticity of migration along the skill
distribution. We obtain significantly different tax schedules.
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Therefore, it is not sufficient to estimate the elasticity of migration. The level as well as the
slope of the semi-elasticity of migration are crucial to derive the shape of optimal marginal income
tax, even for high income earners. The empirical specification (2) of Kleven et al. (2014) does not
allow one to recover the slope of the semi-elasticity. Another specification with additional terms
should be estimated.

Different conclusions can be drawn from our results. From a first perspective, the uncertainty
about the profile of the semi-elasticity of migration may justify very low, and maybe even negative,
marginal tax rates for the top 1% of the income earners. This may partly explain why OECD
countries were reducing their top marginal tax rates before the financial crisis of 2007. From a
second perspective, the potential consequences of mobility might be so substantial in terms of
redistribution that governments might want to hinder migration. For example, departure taxes
have recently been implemented in Australia, Bangladesh, Canada, Netherlands and South Africa.
Finally, from a third viewpoint, the problem is not globalization per se but the lack of cooperation
between national tax authorities.

A first possibility is an agreement among national policymakers resulting in the implementa-
tion of supranational taxes, for example at the EU level. A second possibility relies on the exchange
of information between Nation states. Thanks to this exchange, the policymaker of a given coun-
try would be able to levy taxes on its citizens living abroad, as implemented by the United States.
Indeed, in a citizenship-based income tax system, moving abroad would not change the tax sched-
ule an individual faces, so that the distortions due to tax competition would vanish. There has
been some advances in the direction of a better exchange of information between tax authorities.
For example, the OECD Global Forum Working Group on Effective Exchange of Information was
created in 2002 and contains two models of agreements against harmful tax practices. However,
these agreements remain for the moment non-binding and are extremely incomplete.
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Among the various potential extensions, a particularly promising one concerns the possibility
for governments to offer nonlinear preferential tax treatments to foreign workers, as for example
in Denmark (Kleven et al., 2014). In particular, it would be interesting to compare our results with
the social outcome arising when discrimination based on citizenship is allowed.
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A PROOF OF PROPOSITION 1

We use the dual problem to characterize best response allocations:

max
Ui(w),Yi(w)

∫ w1

w0

(Yi (w)− v (Yi (w) ; w)−Ui (w)) ϕi (Ui (w)−U−i (w) ; w) dw

s.t. U′i (w) = −v′w (Yi (w) ; w) and Ui(w0) ≥ Ui(w0),
(23)

in which Ui(w0) is given. We adopt a first-order approach by assuming that the monotonicity con-
straint is slack. We further assume that Y(·) is differentiable. Denoting q(·) the co-state variable,
the Hamiltonian associated to Problem (23) is:

H(Ui, Yi, q; w) ≡ [Yi − v(Yi; w)−Ui] ϕi(Ui −U−i; w)− q(w) v′w (Yi; w) .

Using Pontryagin’s principle, the first-order conditions for a maximum are:

1− v′y (Yi(w); w) =
q (w)

ϕi (∆i(w); w)
v′′yw (Yi(w); w) ,(24)

q′(w) = {1− [Yi(w)− v(Yi(w); w)−Ui(w)] ηi(∆i(w); w)} ϕi (∆i(w); w) ,(25)

q(w1) = 0 when w1 < ∞ and q(w1)→ 0 when w1 → ∞,(26)

q (w0) ≤ 0.(27)

Integrating Equation (25) between w and w1 and using the transversality condition (26), we obtain:

(28) q(w) = −
∫ w1

w
[1− η∗(x) T(Y(x))] f ∗(x) dx.

Defining X(w) = −q(w) leads to (14). Equation (24) can be rewritten as:

(29) 1− v′y (Y(w); w) = −X (w)

f ∗(w)
v′′yw (Y(w); w)
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Dividing (5) by (4) and making use of (3), we get

v′′yw(Y(w); w) = −α(w)

ε(w)

1− T′(Y(w))

w
.

Plugging (3) and the latter equation into (29) leads to (13).

B PROOF OF PROPOSITION 3

From (13), T′(Y(w)) has the same sign as the tax level effect X(w). The transversality condition
(27) is equivalent to X(w0) ≥ 0, while (26) is equivalent to lim

w 7→w1
X(w) = 0. From (14), the derivative

of X(w) is

(30) X′(w) =

[
T(Y(w))− 1

η∗(w)

]
η∗(w) f ∗(w)

We now turn to the proofs of the different parts of Proposition 3.

i) η∗(w) is constant and equal to η∗

We successively show that any configuration but T′(Y(w)) > 0 for all w ∈ (w0, w1) contradicts
at least one of the transversality conditions (26) or (27). We start by establishing the following
Lemmas, which will also be useful for the case where η∗(w) is decreasing.

LEMMA 1. Assume that for any w ∈ [w0, w1], η∗′(w) ≤ 0 and assume there exists a skill level ŵ ∈
(w0, w1) such that T′(Y(ŵ)) ≤ 0 and T(Y(ŵ)) > 1/η∗(ŵ). Then X(w0) < 0, so the transversality
condition (27) is violated.

Proof As T(Y(w)) = Y(w) − C(w) and η(w) are continuous functions of w, there exists by con-
tinuity an open interval around ŵ where T(Y(w)) > 1/η∗(w). Let w∗ ∈ [w0, w̃) be the low-
est bound of this interval. Then either w∗ = w0 or T(Y(w∗)) = 1/η∗(w∗). Moreover, for all
w ∈ (w∗, ŵ], one has that T(Y(w)) > 1/η∗(w), thereby X′(w) > 0 according to (30). Hence,
one has that X(w) < X(ŵ) ≤ 0, thereby T′ (Y(w)) < 0 for all w ∈ [w∗, ŵ). Consequently,
T(Y(w∗)) > T(Y(ŵ)) > 1/η∗(ŵ) ≥ 1/η∗(w∗). So, one must have w∗ = w0. Finally, we get
X(w∗) = X(w0) < 0, which contradicts the transversality condition (27). QED

LEMMA 2. Assume that for any w ∈ [w0, w1], η∗′(w) ≤ 0 and assume there exists a skill level ŵ ∈
(w0, w1) such that T′(Y(ŵ)) ≤ 0 and T(Y(ŵ)) < 1/η∗(ŵ). Then X(w1) < 0, so the transversality
condition (26) is violated.

Proof As T(Y(w)) = Y(w) − C(w) and η(w) are continuous functions of w, there exists by con-
tinuity an open interval around ŵ where T(Y(w)) < 1/η∗(w). Let w∗ ∈ (ŵ, w1] be the high-
est bound of this interval. Then either w∗ = w1 or T(Y(w∗)) = 1/η∗(w∗). Moreover, for all
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w ∈ [ŵ, w∗), one has that T(Y(w)) < 1/η∗(w), thereby X′(w) < 0, according to (30). Hence,
one has that X(w) < X(ŵ) ≤ 0, thereby T′ (Y(w)) < 0 for all w ∈ (ŵ, w∗]. Consequently,
T(Y(w∗)) < T(Y(ŵ)) < 1/η∗(ŵ) ≤ 1/η∗(w∗). So, one must have w∗ = w1. Finally, we get
X(w∗) = X(w1) < 0, which contradicts the transversality condition (26). QED

From Lemmas 1 and 2, it is not possible to have T′(Y(ŵ)) ≤ 0 and T(Y(ŵ)) 6= 1/η(ŵ), other-
wise one of the transversality conditions is violated. Assume there exists a skill level ŵ ∈ (w0, w1)

such that T′(Y(ŵ)) < 0 and T(Y(ŵ)) = 1/η0(ŵ). By continuity, there exists ε > 0 such that
T′(Y(ŵ− ε)) < 0 and T(Y(ŵ− ε)) > 1/η∗, in which case, Lemma 1 applies.

Last, assume there exists a skill level ŵ ∈ (w0, w1) such that T′(Y(ŵ)) = 0 and T(Y(ŵ)) =

1/η∗(ŵ). According to the Cauchy-Lipschitz theorem (equivalently, the Picard–Lindelöf theorem),
the differential system of equations in U(w) and X(w) defined by (10) and (30) (and including (13)
to express Y (w) as a function of X(w)) with initial conditions that correspond to T′(Y(ŵ)) =

X(ŵ) = 0 and T(Y(ŵ)) = 1/η∗(ŵ) admits a unique solution where X(w) ≡ 0 and T(·) = 1/η∗

for all w. From (9), such a solution provides excess budget resources when E is assumed nil and
provides less utility level than the laissez faire policy where T(·) = 0.

Consequently, any case where T′(Y(ŵ)) ≤ 0 for w ∈ (w0, w1) leads to the violation of at least
one of the transversality conditions.

We finally show that T(Y(w)) < 1/η∗(w) for all w ∈ (w0, w1). Assume by contradiction that
there exists a skill level ŵ ∈ (w0, w1) such that T(Y(ŵ)) ≥ 1/η∗(ŵ). Because T′(Y(w)) > 0 and
η∗′(w) = 0 for all w ∈ (w0, w1), we have T(Y(w)) > 1/η∗(w) for all w ∈ (ŵ, w1]. Equation (30)
thus implies X′(w) > 0 for all w ∈ (ŵ, w1]. Moreover, as we know from above that T′(Y(w)) > 0
for all w ∈ (w0, w1), we have in particular X(ŵ) > 0. Combined with X′(w) > 0 for all w ∈ (ŵ, w1],
this implies that X(w) does not tend to zero as w tends to w1, which contradicts the transversality
condition (26).

ii) η∗(w) is decreasing

If there exists a skill level ŵ ∈ (w0, w1) such that T′(Y(ŵ)) ≤ 0 and T(Y(ŵ)) > 1/η∗(ŵ),
Lemma 1 applies. If there exists a skill level ŵ ∈ (w0, w1) such that T′(Y(ŵ)) ≤ 0 and T(Y(ŵ)) <

1/η∗(ŵ), Lemma 2 applies. Finally, if there exists a skill level ŵ ∈ (w0, w1) such that T′(Y(ŵ)) ≤ 0
and T(Y(ŵ)) = 1/η∗(ŵ), then the function w 7→ T(Y(w))− 1/η∗(w) is non-positive and admits a
negative derivative at ŵ, as η∗′(·) < 0. Hence, there exists w > w̃ such that T(Y(w)) < 1/η∗(w),
thereby X′(w) < 0 for all w ∈ (w̃, w]. Consequently, X′(w) < 0 (equivalently T(Y(w)) < 1/η∗(w))
and X(w) < X(w̃) = 0 (equivalently T′(Y(w)) < 0), in which case Lemma 2 applies at w. Conse-
quently, any case where T′(Y(ŵ)) ≤ 0 for w ∈ (w0, w1) leads to the violation of at least one of the
transversality conditions, which ends the proof of Part ii) of Proposition 3.

iii) η∗(w) is increasing

We first show two useful lemmas.
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LEMMA 3. Assume that for any w ∈ [w0, w1], η∗′(w) > 0 and assume there exists a skill level ŵ ∈
(w0, w1) such that T′(Y(ŵ)) ≥ 0 and T(Y(ŵ)) ≥ 1/η∗(ŵ). Then, X(w1) > 0, so the transversality
condition (26) is violated.

Proof We first show that we can assume that T(Y(ŵ)) > 1/η∗(ŵ) without any loss of generality.
Assume that T(Y(ŵ)) = 1/η∗(ŵ) and T′(Y(ŵ)) ≥ 0. As η∗′(·) > 0, the function w 7→ T(Y(w))−
1/η∗(w) is non-negative and admits a positive derivative at ŵ. Hence, there exists w > w̃ such that
T(Y(w)) > 1/η∗(w), thereby X′(w) > 0 for all w ∈ (w̃, w]. Consequently, X′(w) > 0 (equivalently
T(Y(w)) > 1/η∗(w)) and X(w) > X(w̃) = 0 (equivalently T′(Y(w)) > 0).

Consider now that T′(Y(ŵ)) ≥ 0 and T(Y(ŵ)) > 1/η∗(ŵ). As T(Y(w)) = Y(w)− C(w) and
η(w) are continuous functions of w, there exists by continuity an open interval around ŵ where
T(Y(w)) > 1/η∗(w). Let w∗ ∈ (ŵ, w1] be the highest bound of this interval. Then, either w∗ = w1

or T(Y(w∗)) = 1/η∗(w∗). Moreover, for all w ∈ [ŵ, w∗), we have T(Y(w)) > 1/η∗(w), and thereby
X′(w) > 0 according to (30). Hence, we have X(w) > X(ŵ) ≥ 0, thereby T′ (Y(w)) > 0 for all
w ∈ (ŵ, w∗]. Consequently, T(Y(w∗)) > T(Y(ŵ)) > 1/η∗(ŵ) > 1/η∗(w∗). So, w∗ = w1. Finally,
we get X(w∗) = X(w1) > 0, which contradicts the transversality condition (26). QED

LEMMA 4. Assume that for any w ∈ [w0, w1], η∗′(w) > 0 and assume there exists a skill level
ŵ ∈ (w0, w1) such that T′(Y(ŵ)) ≥ 0 and T(Y(ŵ)) < 1/η∗(ŵ). Then, X(w) > 0 for all w < ŵ.

Proof As T(Y(w)) = Y(w) − C(w) and η(w) are continuous functions of w, there exists by con-
tinuity an open interval around ŵ where T(Y(w)) < 1/η∗(w). Let w∗ ∈ [w0, ŵ) be the low-
est bound of this interval. Then, either w∗ = w0 or T(Y(w∗)) = 1/η∗(w∗). Moreover, for all
w ∈ (w∗, ŵ], we have T(Y(w)) < 1/η∗(w), and thereby X′(w) < 0 according to (30). Hence, we
have X(w) > X(ŵ) ≥ 0, thereby T′ (Y(w)) > 0 for all w ∈ (w∗, ŵ]. Consequently, T(Y(w∗)) <

T(Y(ŵ)) < 1/η∗(ŵ) < 1/η∗(w∗). So, w∗ = w0 and X(w) > 0 for all w ∈ [w0, ŵ). QED

According to the transversality condition (27), either X(w0) > 0 or X(w0) = 0. However, in
the latter case where X(w0) = 0, we must have T′(Y(w)) < 0 for all w ∈ (w0, w1). Otherwise,
either there exists ŵ ∈ (w0, w1) such that T′(Y(ŵ)) ≥ 0 and T(Y(ŵ)) ≥ 1/η∗(ŵ), in which case
Lemma 3 implies that the transversality condition (26) is violated, or there exists ŵ ∈ (w0, w1)

such that T′(Y(ŵ)) ≥ 0 and T(Y(ŵ)) < 1/η∗(ŵ), in which case Lemma 4 implies that X(w0) > 0.
Consequently, if X (w0) = 0, we must have T′ (Y (w)) < 0 for all w ∈ (w0, w1). Using (9) and the
assumption that E = 0, this implies that T(Y(w0)) > 0 > T(Y(w1)). Hence, this policy provides
the workers of skill w0 with less utility than the laissez-faire policy T(·) = 0, which contradicts
X (w0) = 0. We therefore have established that X (w0) > 0.

By continuity of function X(·), either X(w) > 0 for all w ∈ [w0, w1) (equivalently T′(Y(w)) ≥ 0
for all w < w1) which corresponds to case (a) of Part iii) of Proposition 3, or there exists w̆ ∈
(w0, w1) such that X(w) > 0 for all w < w̆ and X(w̆) = 0. We now show that in the latter case,
we must have T′(Y(w)) < 0, or equivalently X(w) < 0, for all w ∈ (w̆, w1). Otherwise, either
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there exist ŵ ∈ (w̆, w1) such that T′(Y(ŵ)) ≥ 0 and T(Y(ŵ)) ≥ 1/η∗(ŵ), in which case Lemma 3
implies that the transversality condition (26) is violated, or there must exist ŵ ∈ (w̆, w1) such that
T′(Y(ŵ)) ≥ 0 and T(Y(ŵ)) < 1/η∗(ŵ), in which case Lemma 4 implies that X(w̆) > 0), which
contradicts X(w̆) = 0. Therefore, if there exists w̆ ∈ (w0, w1) such X(w̆) = 0, then we must have
X(w) > 0, thereby T′(Y(w)) > 0, for all w < w̆ and X(w) < 0, thereby T′(Y(w)) < 0, for all
w ∈ (w̆, w1), which corresponds to case (b) of Part iii) of Proposition 3.

iv) η∗(w) is increasing and tends to infinity

From case iii), we know that the marginal tax rates are either positive or there exists a threshold
above which they are negative. Assume by contradiction that the marginal tax rates are positive.
Then, the tax function is increasing. In addition, it must be positive for some individuals so as to
clear the budget constraint. As the semi-elasticity of migration increases to infinity, there exists a
skill level ŵ at which T′(Y(ŵ)) ≥ 0 and T(Y(ŵ)) > 1/η∗(ŵ). Then, the transversality condition
(26) is violated according to Lemma 3, which leads to the desired contradiction.
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