CO<sub>2</sub> Free Ammonia as CO<sub>2</sub> Free Fuel and Hydrogen Carrier - Achievements of SIP "Energy Carriers" -

24 June, 2019

# Bunro SHIOZAWA (The former) Deputy Program Director SIP "Energy Carriers"

# Contents

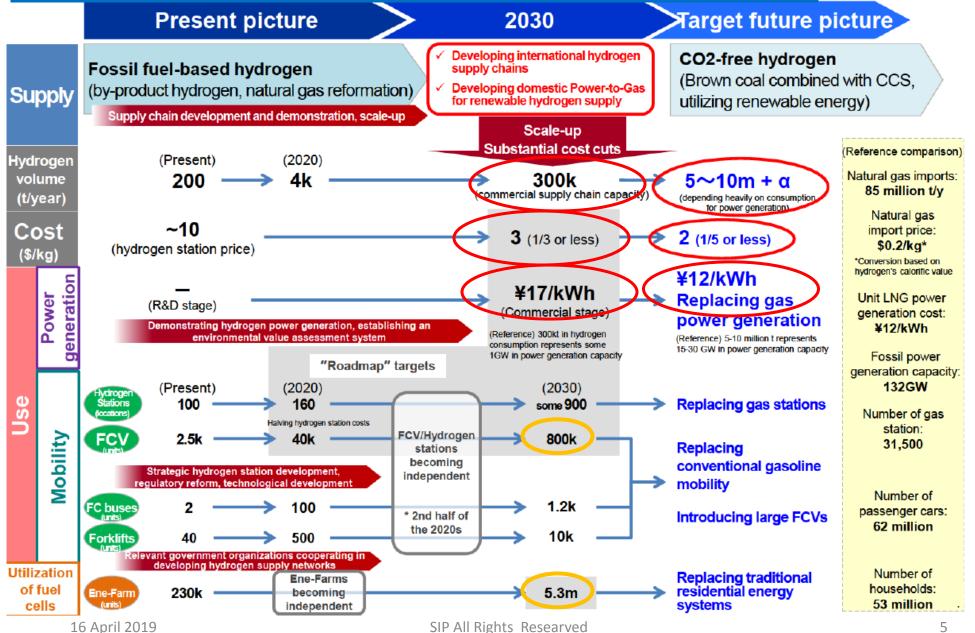
- 1. Hydrogen Energy Policy of Japan and SIP "Energy Carriers"
- 2. Major achievements of SIP "Energy Carriers"
  - NH<sub>3</sub> direct use technologies -
  - (1) Use technologies of NH<sub>3</sub> as CO<sub>2</sub> free fuel or hydrogen energy carrier
  - (2) Feasibility study on CO<sub>2</sub> free NH<sub>3</sub> supply chain
- 3. The way forward
  - (1) The Green Ammonia Consortium
  - (2) For the construction of  $CO_2$  free NH<sub>3</sub> value chain

# 1. Hydrogen Energy Policy of Japan and SIP "Energy Carriers"

## Policies and Actions toward a Low Carbon Society

Speech by Prime Minister Abe at COP21 "The key to acting against climate change without sacrificing economic growth is the development of innovative technologies. To illustrate, there are technologies to produce, store and transport hydrogen towards realizing CO<sub>2</sub>-free societies,"




 Council for Science, Technology and Innovation(CSTI) Hydrogen is one of key areas of CSTI strategies.
 <u>SIP program was launched 2014 ( 5 years program )</u>.
 <u>SIP "Energy carriers" was one of 11 themes of SIP</u> and continued 2014 – 18 fy.

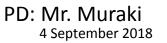
SIP "Energy Carriers"

Strategic Plan for Hydrogen Utilization (or "Basic Hydrogen Strategy") (December 26, 2017, decided by Cabinet Meeting chaired by Prime Minster) (Direct use of ammonia is one of the most feasible options for the low-carbon society.)

## Scenario of Basic Hydrogen Strategy






#### SIP (Cross-Ministerial Strategic Innovation Promotion Program) (CSTI of Cabinet Office)

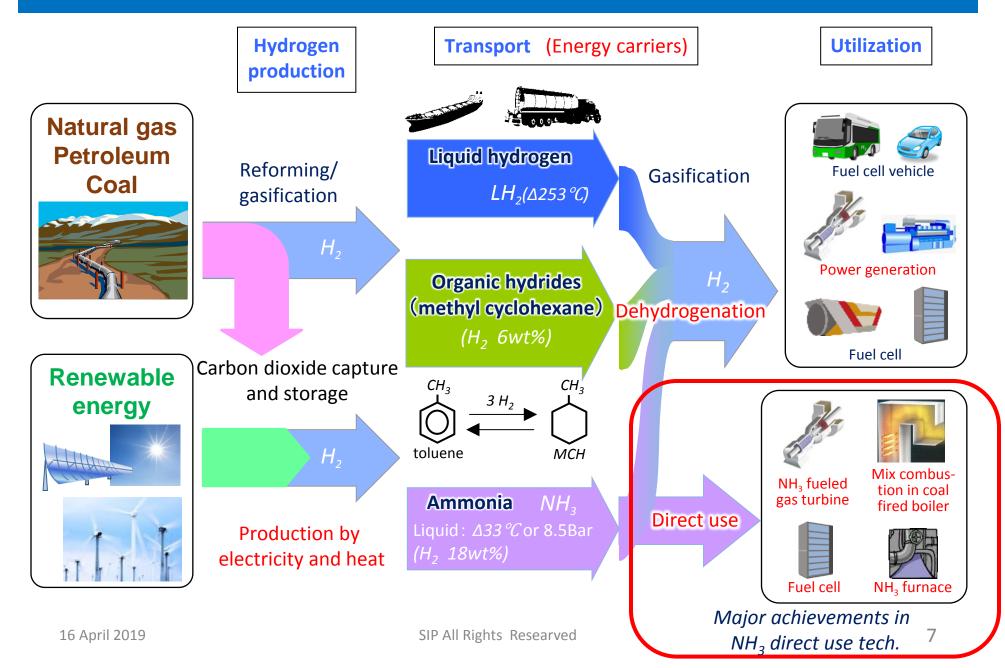
- SIP is created by CSTI to realize innovation through promoting R&D overarching basic to applied research and to commercialization by cross-ministerial cooperation.
- CSTI appoints Program Directors (PDs) for each project and allocates the budget.
- CSTI identifies innovation themes to be covered by SIP and each theme continues for 5 years.
- "Energy Carriers" was selected as one of the 11 themes of SIP in 2014 and have been allocated about 30 M\$ every year.





Dr. Aika




Deputy PDs

Mr. Shiozawa



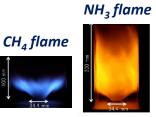
#### **CSTI**: Council for Science, Technology and Innovation

## Scheme of CO<sub>2</sub> Free Hydrogen Value Chains



# Major achievements of SIP "Energy Carriers" NH<sub>3</sub> direct use technologies -

## Achievements ①


#### NH<sub>3</sub> fueled Gas Turbine

#### **1** Small and medium size gas turbines (GT)

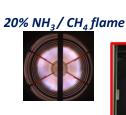
• Developed 50kW and 300kW 100% NH<sub>3</sub> fueled GT

[Tohoku University / AIST / Toyota Energy Solutions]





 41.8 kW and 295 kW power generation was achieved by 100% ammonia fueled micro gas turbines (50kW and 300 kW rating respectively) with less than 15 ppm NOx emission using a standard SCR device.


Exhaust duct

Air inlet duct

Combustor chambe

50kW (100% NH<sub>3</sub>) Micro Gas Turbine

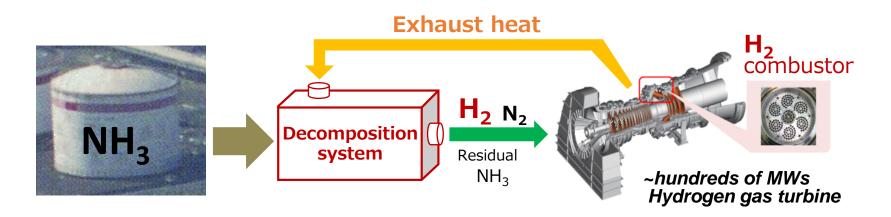
- Developed 2MW 20% NH<sub>3</sub> co-firing GT [ IHI Corporation ]
  - 2MW 20% NH<sub>3</sub> co-firing (with CH<sub>4</sub>) gas turbine for power generation was developed.



2MW (20%  $NH_3$  /  $CH_4$  ) Gas Turbine



SIP All Rights Researved


Enclosure

## Achievements 2

#### NH<sub>3</sub> fueled Gas Turbine

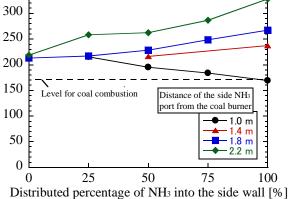
2 Advanced combined cycle gas turbine (Several hundred MW class)

Mitsubishi Heavy Industries Engineering / Mitsubishi Hitachi Power Systems



- Verified technical feasibility of this GTCC system; i.e.: to generate H<sub>2</sub> by cracking NH<sub>3</sub> inside the system using exhaust heat of GT without losing total power generation efficiency of the GTCC system.
- Basic concept of this system is to use NH<sub>3</sub> as H<sub>2</sub> carrier.
- This R&D will continue after SIP "Energy Carriers" finished.

## Achievements 3


#### NH<sub>3</sub>-Coal mixed combustion

#### Single-burner combustion test (1)

#### It was found that by adjusting inlet point of NH<sub>3</sub> in pulverized coal combustion furnace, emission level of NO<sub>x</sub> in 20% NH<sub>3</sub> mixed combustion can be controlled at the same level of 100% pulverized coal combustion.

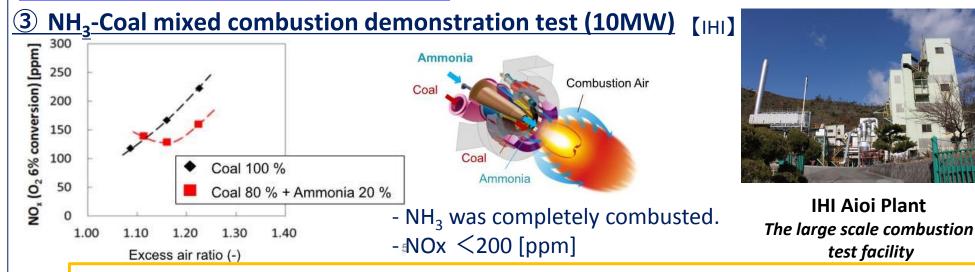


Coal flame



Central Research Institute of Electric Power Industry

#### 2 Co-fired ammonia at the commercial coal power plant [The Chugoku Electric Power Co. Inc.]


- Succeeded in stable and safe operation using NH<sub>3</sub>-Coal mixed fuel:  $(1MW-NH_3 \text{ feed}/156MW-Coal).$
- Not observed Increase of  $NO_x$  and  $NH_3$  concentration in exhaust gas.
- Succeeded in stable power generation during the demonstration test.
- It was evaluated that application of this NH<sub>3</sub> co-firing technology will enable reducing CO<sub>2</sub> emission from coal power generation utilizing existing facilities including existing denitration equipment, and thus will be cost efficient.



Mizushima power plant NO.2 Unit (156MW)

## Achievements ④





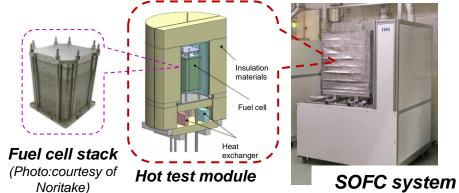
 IHI announced that "the company successfully proved NH<sub>3</sub>-Coal co-firing technology as the technology which enables to contain NO<sub>x</sub> emission in the same level as that from ordinary coal power generation facility with minor modification of facility," while greatly reducing CO<sub>2</sub> emission.

#### **(4)** Detailed F/S on introduction of $NH_3$ to existing coal power generation facility

[Chubu Electric Power, Tohoku Electric Power, Kansai Electric Power]



 Conducted technical as well as economic F/S on introduction of NH<sub>3</sub> as fuel into actual existing coal power generation plant sites.


## Achievements 5

#### NH<sub>3</sub> fueled SOFC

#### <u>NH<sub>3</sub>-fueled solid oxide fuel cell (SOFC)</u>

[Kyoto University / Noritake Co., Limited / IHI Corporation]

- Developed 100% NH<sub>3</sub>-fueled 1kW SOFC system (direct supply of NH<sub>3</sub>).
- Achieved almost the same power generation efficiency as that of H<sub>2</sub> fueled



[Osaka University, Taiyo Nippon Sanso, Nippon Steel Nissin]

#### NH<sub>3</sub> fueled industrial furnace

## Model industrial furnace (100kW)

 Using NH<sub>3</sub> (30%) - CH<sub>4</sub> mixed fuel, achieved equivalent heating efficiency (55%) with that of 100% CH<sub>4</sub> fueled industrial furnace, while containing NO<sub>x</sub> emission less than 150ppm.

#### 2 <u>Application of NH<sub>3</sub> mixed combustion burner for a degreasing furnace</u> in steel plate manufacturing

 Using NH<sub>3</sub> (30%) - CH<sub>4</sub> mixed fuel, achieved to produce equivalent or even better quality of steel plate products than those processed by 100% CH<sub>4</sub> fueled degreasing furnace, in addition to 30% reduction of CO<sub>2</sub> emission.

#### 100kW Model Furnace



CH<sub>4</sub> burners NH<sub>3</sub> burners混



(1)

<del>13 13</del>

## Achievements 6

#### NH<sub>3</sub> synthesis process from CO<sub>2</sub> free hydrogen

[JGC Corporation / AIST / National Institute of Technology, Numazu College / JGC Catalysts and Chemicals Ltd]

- Developed a new catalyst and process to use renewable H<sub>2</sub> as raw material. This newly developed production process can operate under moderate temperature and pressure, and under the condition where input of renewable H<sub>2</sub> may fluctuate.
- Constructed a demonstration plant (20kg-NH<sub>3</sub>/day) at Fukushima Renewable Energy Institute (FREA).
- This completed a model CO<sub>2</sub> free energy value chain (production of CO<sub>2</sub> free NH<sub>3</sub> ⇒ power generation by NH<sub>3</sub> fueled gas turbine (See "Achievements ① above) also located at FREA.



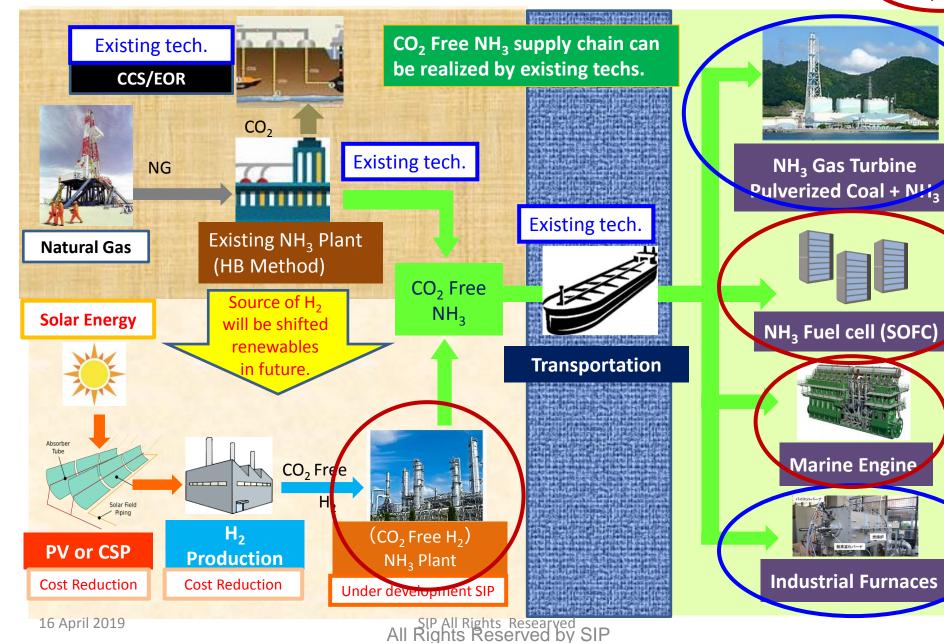
Pilot plant of a new NH<sub>3</sub> production process using renewable H<sub>2</sub> as raw material.



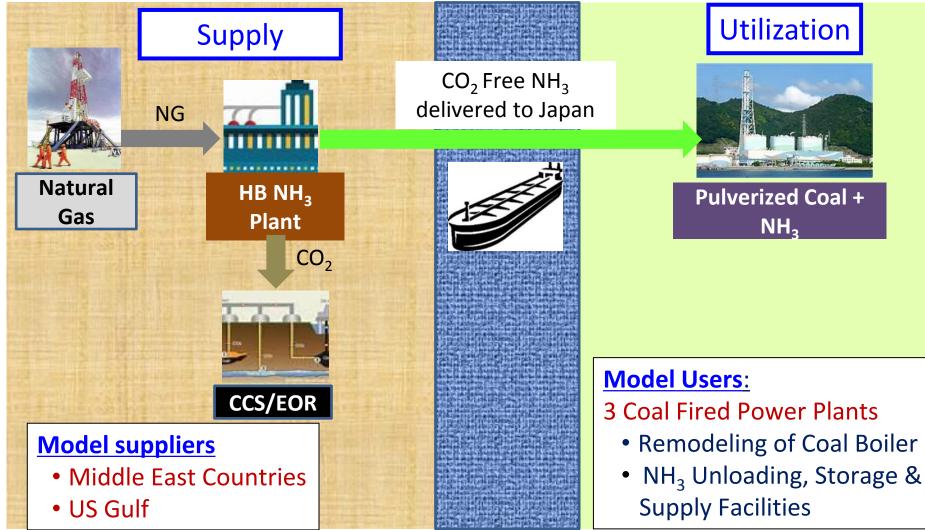
Sub Engine

Newly developed catalyst.

#### NH<sub>3</sub> fueled marine engine


[JFE Engineering, National Institute of Maritime, Port and Aviation technology]

 Required technological challenges in order to use NH3 as fuel for marine engine were identified.


Maine Engine

## Status of CO<sub>2</sub> free Ammonia Value Chain

Developed Additional work required



A feasibility study on CO<sub>2</sub> free NH<sub>3</sub> supply chain (entitled "A Feasibility Study on the Supply Chain of CO<sub>2</sub>-Free Ammonia with CCS and EOR") Conducted by IEEJ with having input from an engineering company, two trading companies and three power generation companies possessing coal fired power generation facilities.



16 April 2019

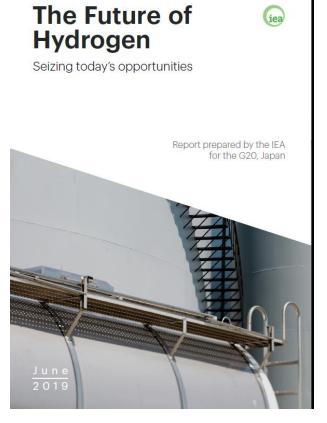
SIP All Rights Researved

#### Findings of the IEEJ Study

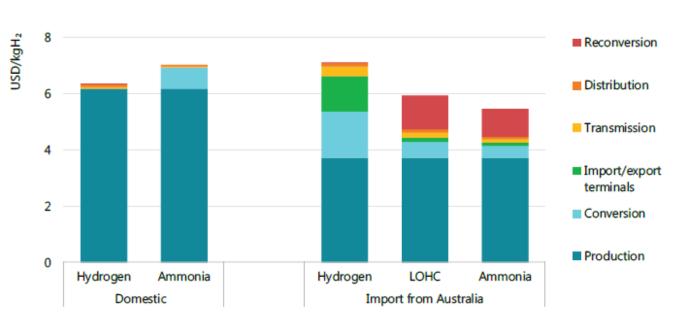
(entitled "A Feasibility Study on the Supply Chain of CO<sub>2</sub>-Free Ammonia with CCS and EOR")

- 350 \$/ton after delivery to the sites  $\Rightarrow$  3.5 Mton 2030, 5 Mton 2035

 According to the analysis using a model developed by IEEJ, import of CO<sub>2</sub> free NH<sub>3</sub> for Coal/NH<sub>3</sub> mixed combustion in coal fired power generation facilities in Japan will amount to 3.5 million tons in 2030 and 5 million tons in 2035, if the price of the CO<sub>2</sub> free NH<sub>3</sub> is 350 \$/ton-NH<sub>3</sub> after delivery to the power generation sites.


- 350 \$/ton of  $CO_2$  free  $NH_3$  can be feasible

- 2. Such price level of 350  $\text{/ton-NH}_3$  would be acceptable level to both suppliers and users according to the analysis, since:
  - (a) suppliers can secure 10% EIRR with this price; and
  - (b) users can sustainably operate the facility using it as  $CO_2$  free fuel to overcome the  $CO_2$  emission constraints.


| The price of<br>"350 \$/ton -NH <sub>3</sub> "<br>already almost clears<br>the $H_2$ cost target | Cost targets mentioned in "Strategic<br>Plan for Hydrogen Utilization" |                                        |  | Equivalent NH <sub>3</sub> price in terms of energy contents |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------|--|--------------------------------------------------------------|
|                                                                                                  | Target year                                                            | H <sub>2</sub> (\$/kg-H <sub>2</sub> ) |  | NH <sub>3</sub> (\$/ton-NH <sub>3</sub> )                    |
|                                                                                                  | 2030                                                                   | 3                                      |  | 480                                                          |
|                                                                                                  | Near future                                                            | 2                                      |  | 320                                                          |

## "The Future of Hydrogen," very recent IEA Report

# Transmission and distribution of hydrogen as ammonia is likely the cheapest mechanism for import to Japan from Australia





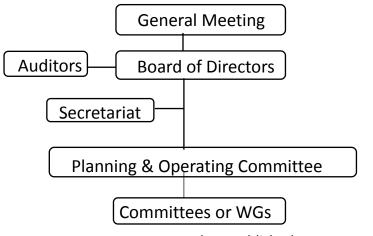


Notes: Assumes distribution of 100 tpd in a pipeline to an end-use site 50 km from the receiving terminal. Storage costs are included in the cost of import and export terminals. More information on the assumptions is available at <u>www.iea.org/hydrogen2019</u>. Source: IEA analysis based on IAE (2019), "Economical Evaluation and Characteristic Analyses for Energy Carrier Systems" and Reuß (2017), "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model". All rights reserved.

The cost of transport from Australia to Japan could represent between 30% and 45% of the full cost of hydrogen; yet imports of electrolytic hydrogen could still be cheaper than domestic production.

- (1)  $NH_3$ 's volumetric hydrogen content is significantly larger than that of other energy carriers (high  $H_2$  content)  $\Rightarrow$  relatively compact infra.;
- (2) **Transportation and storage technologies for NH\_3 are already existing.** (Annually more than 18 M tons of  $NH_3$  is being traded internationally.)
- (3) NH<sub>3</sub> can be directly used as fuel without dehydrogenation.
  (Does not require energy for dehydrogenation.)
- (4)  $NH_3$  does not emit  $CO_2$  in combustion. By R&D in SIP "Energy Carriers," it was found emission of  $NO_X$  in  $NH_3$  combustion can be contained.
- (5)  $NH_3$  has acute toxicity and strong smell and needs handling with care. But not known chronic toxicity and easy to detect.
- (6) Energy equivalent cost of  $NH_3$  is **cheaper** than other energy carriers.
- (7)  $NH_3$  has already widely being used as de-nitration agent in power generation plant sites.
- (8) CCS cost from  $NH_3$  production plant is cheaper than that from exhaustion gas from turbine or boiler (cheaper CCS cost).

# 3. The way forward


#### **Objectives**

Development of a commercial CO2 free ammonia value chain toward low carbon society.

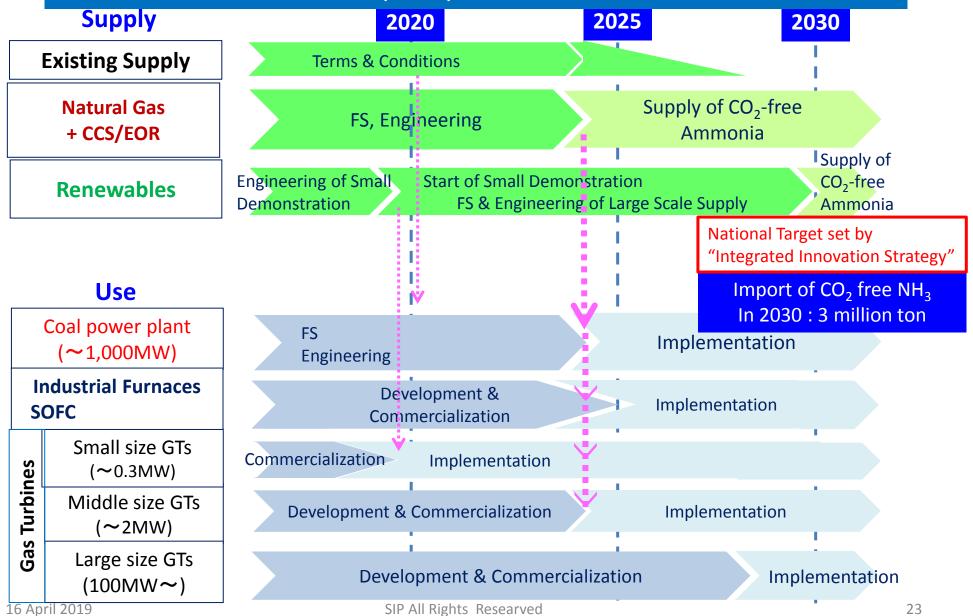
#### Main activities

- (a) Promotion of collaborations between industry, government and academia.
- (b) Commercialization of NH3 utilization technologies and supply chain.
- (c) Studies on Feasibilities, Environmental Impact and Standard & Regulation
- (d) Strategy & Policy making
- (e) International collaborations



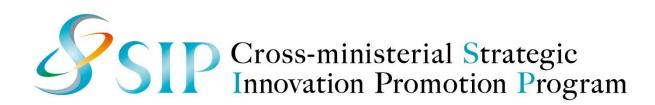


to be established as necessary


The Green Ammonia Consortium was originally established in July 2017. At that time, membership of the original consortium was only open for the entities which participated in SIP "Energy Carriers."

After SIP "Energy Carriers" ends in March 2019, a new "The Green Ammonia Consortium" will be established as an independent General Incorporated Association to be registered under the Japanese Law and its membership will be open for global entities which are interested in participating and are ready to contributing to the objectives of the new "The Green Ammonia Consortium." 16 April 2019

| GAC Mmbers                 | CHEMICALS/MATERIALS                  | Toyota Central R&D Labs.                                     |  |
|----------------------------|--------------------------------------|--------------------------------------------------------------|--|
| (As of June 6, 2019)       | Ube Industries                       | JGC Corpotration                                             |  |
| ENERGY                     | Showa Denko K.K                      | Mitsui E&S                                                   |  |
| Kansai Electric Power      | JNC                                  | Mitsubishi Heavy Industries                                  |  |
| (Kyushu Electric Power)    | Sumitomo Chemical                    | Mitsubishi Hitachi Power Systems                             |  |
| (JERA*)                    | Тогау                                |                                                              |  |
| The Chugoku Electric Power | JGC Catalysts and Chemicals          | FOREIGN COMPANIES                                            |  |
| Electric Power Development | Nippon Shokubai                      | Equinor ASA                                                  |  |
| Tohoku Electric Power      | Mitsubishi Gas Chemical              | KBR                                                          |  |
| Hokuriku Electric Power    | Mitsubishi Material                  | The Hydrogen Utility                                         |  |
| Osaka Gas                  |                                      | Woodside Energy                                              |  |
| Tokyo Gas                  | CIVIL ENGINEERING                    | Yara International                                           |  |
| Toho Gas                   | Hazama Ando Corporation              |                                                              |  |
| JXTG Energy                | Obayashi Corporation                 | RESEARCH INSTITUTE                                           |  |
| Aramco Asia Japan          | (Kajima Corporation)                 | The Institute of Energy Economics, Japan                     |  |
| Shell Japan                | (Shimizu Corporation)                | National Institute of Maritime, Port and Aviation Technology |  |
| TRADING                    | (Takenaka Corporation)               | Japan Coal Energy Center                                     |  |
| Suzuyo                     | MACINERY & ENGINEERING               | Central Research Institute of Electric Power Industry        |  |
| Sumitomo Corporation       | IHI                                  | CISRO (Australia)                                            |  |
| Marubeni Corporation       | JFE Engineering                      | PUBLIC ORGANIZATION                                          |  |
| Mitsui & Co.               | Chiyoda Corporation                  | Akita Prefecture Industrial Technology Center                |  |
| Mitsubishi Corporation     | Chugai Ro Corporation                | City of Mihihama                                             |  |
| LOGISTICS                  | thyssenkrupp Uhde Chlorine Engineers | City of Yokkaichi                                            |  |
| Iino Kaiun Kaisha          | Tokyo Electric Power Services        | Austrade Tokyo Office                                        |  |
| Uyeno Transtech            | Toyo Engineering                     | State of the South Australia                                 |  |
| Mitsui O.S.K.Lines         | Toyota Energy Solutions              | Norwaygien Embassy in Tokyo                                  |  |
| Nippon Yusen Kaisha        | Toyota Industries                    |                                                              |  |


## Roadmap of CO<sub>2</sub> free NH<sub>3</sub> supply chain

- Developed by members of GAC -



# Thank you for your attention.

E-mail: shiozawab@sc.sumitomo-chem.co.jp

