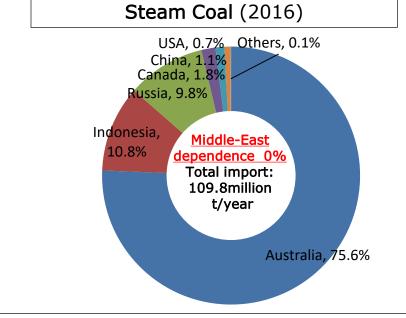
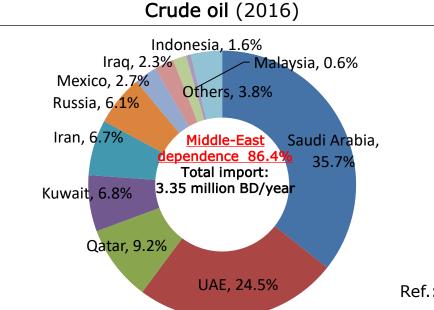
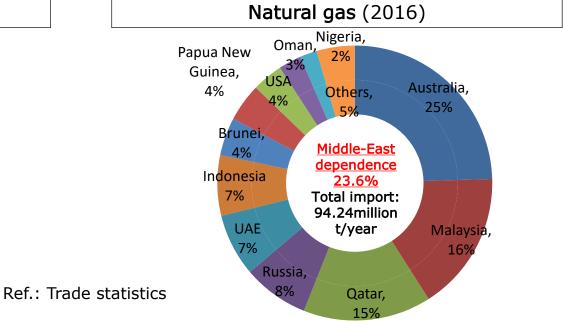


Challenges for Japan's Energy Transition - Basic Hydrogen Strategy -


June 24

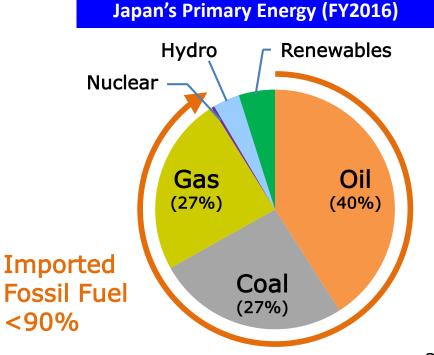

Masana Ezawa


Director, Hydrogen and Fuel Cell Strategy Office, Ministry of Economy, Trade and Industry (METI), Japan

Fossil Fuel Exporting Countries to Japan

Mission/ Background

Japan's Responsibility for Energy Transition

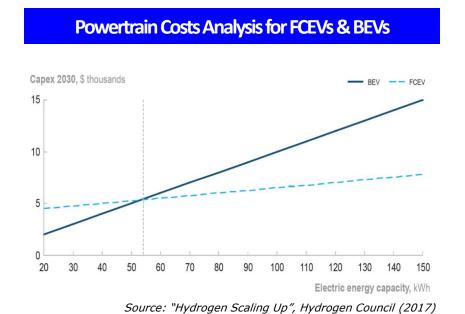

⇔ Energy trilemma

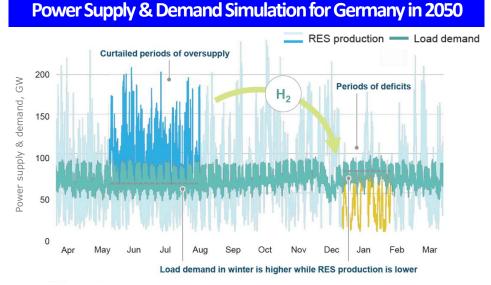
- ✓ Energy security
- ✓ Environment (Sustainability)
- ✓ Economic affordability (Cost)

3"E" + Safety

Measures;

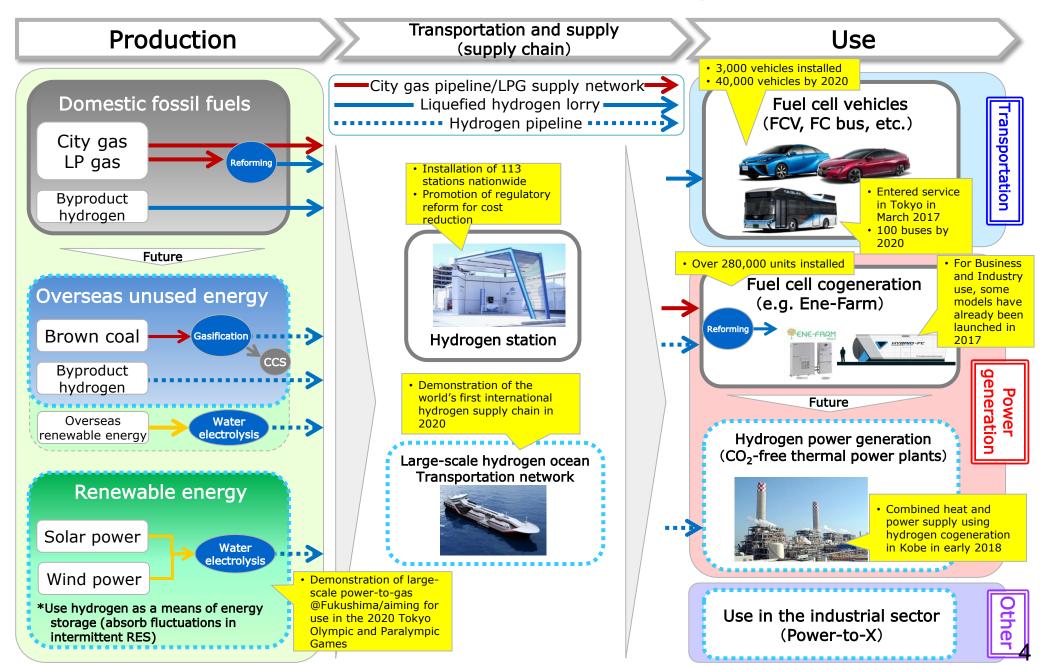
- ✓ Energy saving
- ✓ Renewable energy
- ✓ Nuclear energy
- ✓ CCS + Fossil fuels
- √ Hydrogen


Why Hydrogen?

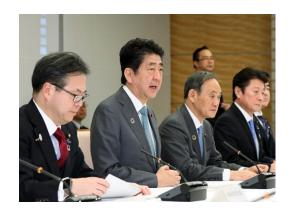


Contribution to 3"E"

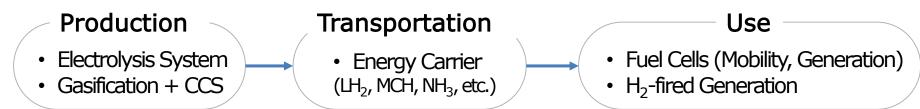
- ✓ Contribute de-carbonization (Environment)
- ✓ Mitigate dependence on specific countries (Energy security)
- ✓ Enable to utilize low cost feedstock (Economic affordability)
- + Japan's edge in technology since 1970s


Roles of H₂ in Electrified Mobility/ Generation Mix

Source: "How Hydrogen Empowers the Energy Transition", Hydrogen Council (2017)


Direction of Activities to Realize a "Hydrogen Society"

Strategy



- "Basic Hydrogen Strategy" (Prime Minister Abe's Initiative)
 - √ World's first national strategy
 - ✓ 2050 Vision: position H₂ as a new energy option (following Renewables)
 - ✓ Target: make H_2 affordable (\$3/kg by 2030 \Rightarrow \$2/kg by 2050)

3 conditions for realizing affordable hydrogen

Key Technologies to be Developed

Scenario

			Current	2020	2025	2030	2050
Supply			Domestic H ₂	(RD&D)	\rightarrow H_2S	mational Supply Chains Power-to-ga	$\longrightarrow CO_2$ -free H ₂
Volume ((t/y)	200	4k		300k	5~10m
Cost (\$/k		(g)	~10			3	2
Demand	Gene- ration	Large	Power Plant	(RD&D)		>1GW -	→ 15~30GW
		FC CH *Primar	P* 274k — yenergy: natural gas.	—— 1.4m —		5.3m -	→ Replace Old Systems
	Mobility	HRS	100 —	160	320	—— (900) –	Replace Filling Stations
		FCV	2.9k —	—— 40k —	200k	800k	Replace
		FC Bus	5 —	<u> </u>		1.2k -	> Conventional
		FC FL	140			10k	Mobility
	Industry Use			(RD&D) ·	>	Expand H ₂ Use 6	

6

Summary of the Strategic Road Map for Hydrogen and Fuel Cells

 Set of new target to achieve (Spec for basic technologies and cost breakdown goals)

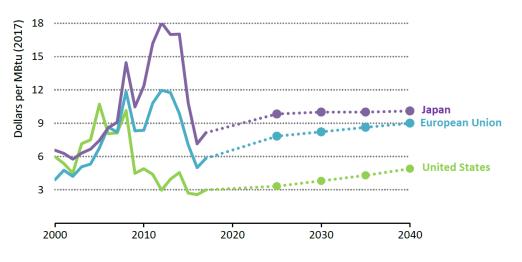
```
✓ Price difference between FCV and HV: ¥3m → \0.7m
```

✓ Main FCV System cost, FC : \20,000/kW → \5,000/kW,

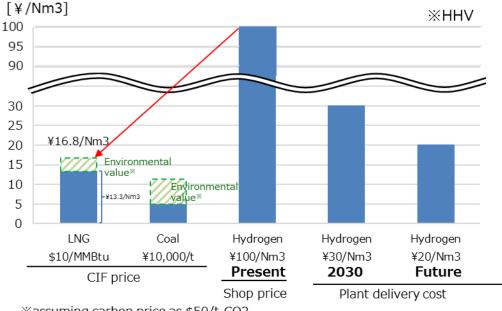
Storage: $\langle 0.7m \rightarrow \langle 0.3m \rangle$

- ✓ HRS Construction cost: \350m → \200m
- ✓ HRS Operating cost: \34m/year → \15m/year
- ✓ Production cost from brown coal gasification:

several hundreds JPY/Nm3→ \12/Nm3

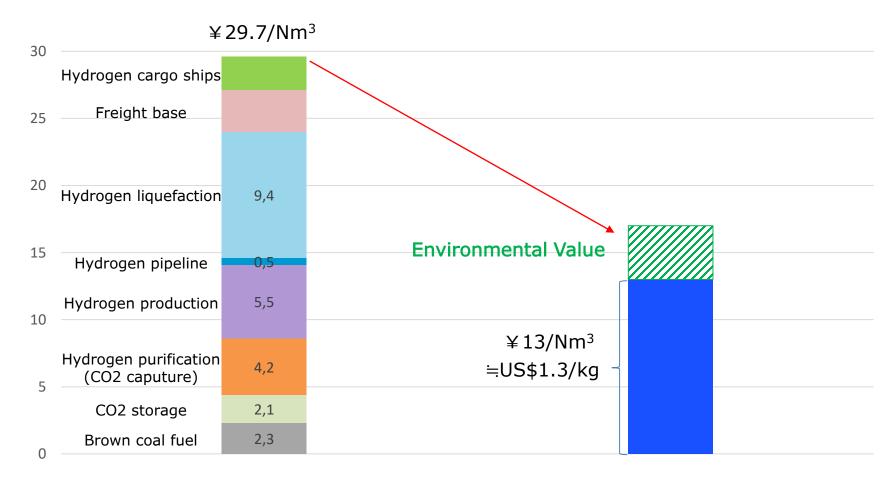

✓ Electrolyzer Cost: \200,000m/kW→\50,000/kW

The Strategic Road Map for Hydrogen and Fuel Cells ~ Industry-academia-government action plan to realize Hydrogen Society ~ (overall)									
	In order to achieve goals set in the Basic Hydrogen Strategy,								
⊖ Set of new targets to achieve (Specs for basic technologies and cost breakdown goals), establish approach to achieving target									
		Establish expert committee to evaluate and conduct follow-up for each field.							
	Goals in the Basic Hydrogen Strategy		Set of targets to achieve	Approach to achieving target					
9	Mobilit	FCV 200k b y2025 800k by 2030	 2025 Price difference between FCV and HV (\3m → \0.7m) Cost of main FCV system (FC \20k/kW → \5k/kW Hydrogen Storage \0.7m → \0.3m) 	Regulatory reform and developing technologyConsideration for creating					
		HRS 320 by 2025 900 by 2030	 Construction and operating costs Construction cost \350m → \200m Costs of components for Compressor \90m → \50m Accumulator \50m → \10m 	nation wide network of HRS • Extending hours of operation					
NSO		Bus 1,200 by 2030	Early 2020s Vehicle cost of FC bus (\105m → \52.5m) **In addition, promote development of guidelines and technology development for expansion of hydrogen use in the field of FC trucks, ships and trains.	Increasing HRS for FC bus					
	Power	Commercialize by 2030	2020 ■ Efficiency of hydrogen power generation (26%→27%) **1MW scale	 Developing of high efficiency combustor etc. 					
	5	Early realization of grid parity	2025 • Realization of grid parity in commercial and industrial use	 Developing FC cell/stack technology 					
	Fossil +CCS	Hydrogen Cost	Early Production: Production cost from brown coal gasification (\several hundred/Nm3→ \12/Nm3) (\several hundred/Nm3→ \12/Nm3)	 Scaling-up and improving efficiency of brown coal gasifier 					
KlddnS		\30/Nm3 by 2030 \20/Nm3 in future	• Storage/Transport : Scale-up of Liquefied hydrogen tank (thousands m→50,000m)	 Scaling-up and improving thermal insulation properties 					
	Green H2	System cost of water electrolysis \50,000/kW in future	Higher efficiéh&y&dfWh/kg→6kWh/kg) 2030 Liquefaction of electrolyzer (\200,000m/kW→\50,000/kW) • Efficiency of water (5kWh/Nm3→4.3kWh/Nm3) electrolysis	 Demonstration in model regions for social deployment utilizing the achievement in the demonstration of Namie, Fukushima Development of electrolyzer with higher efficiency and durability 					


Hydrogen Cost Targets

- In order to achieve grid parity, Hydrogen cost is needed to be lower than price of natural gas.
- Target of hydrogen importing cost in Japan has to be $\pm 13/Nm^3$ in future (US\$1.3/kg, equivalent to US\$10/MMBtu).

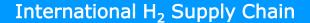
Natural gas prices in key regions in the New Policies Scenario



from World Energy Outlook 2018 (IEA)

Hydrogen Cost Perspective of the Supply Chain Project

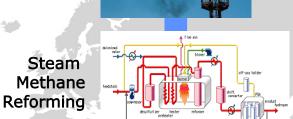
- Target cost of hydrogen supply in 2030 is ¥30/Nm³.
- Natural gas price is unpredictable, however further cost reduction is needed.


2030

Hydrogen Cost [¥∕Nm3]

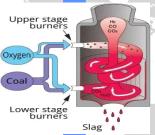
Future target cost

Ongoing Projects (Supply-side)



Japan-Australia Pilot Project

Japan-Brunai Pilot Project



Off-gas

Brown Coal

+CCS

Dehvdrogenation* (MCH→TOL)

* Image

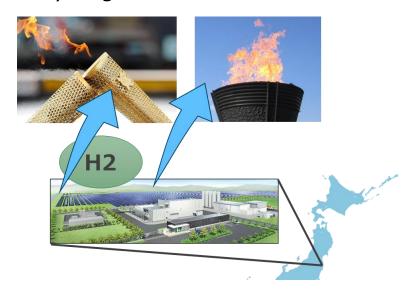
Loading Facility*

Power-to-gas

Fukushima Renewable H₂ Project

Power-to-Gas Plant*

Electrolysis System (Alkaline)



Tokyo

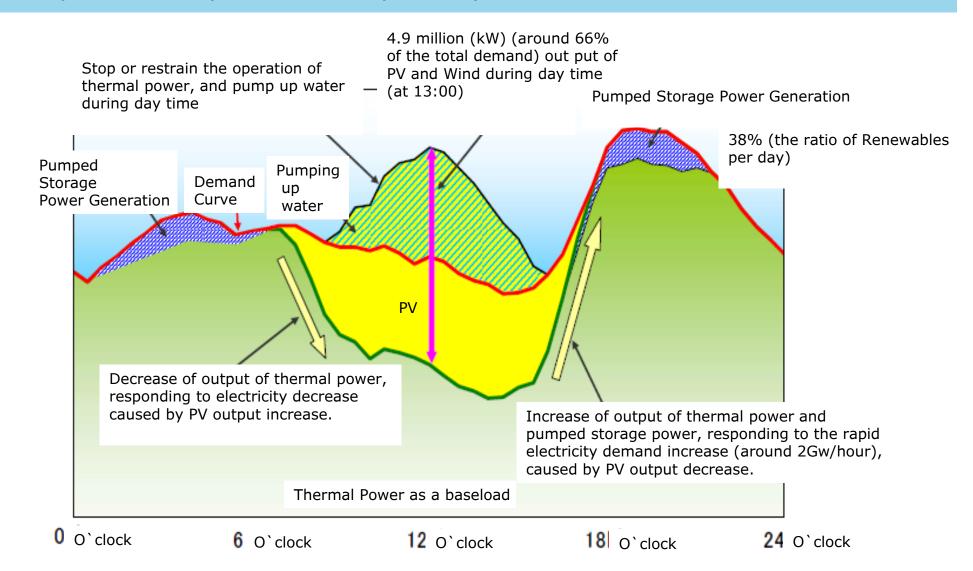
Olympic and Paralympic games Tokyo in 2020

Olympic torch and flame

✓ The first Olympic and Paralympic games with Olympic torch and flame lighted by hydrogen

Can be colored in various colors!

Transportation



Demand & Supply Balance in Kyushu Area (May 4th, 2016)

Dispatch ability of thermal power plant is essential.

Ongoing Projects (Demand-side)

H₂ Station Network

H₂ Applications

2013~

 \times 100 in 2020

FC Truck Demo

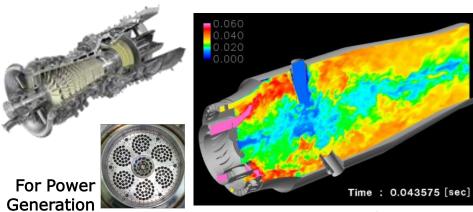
_

Hydrogen Gas Turbine (1MW class)

2018~

<500MW

Joint Venture for H₂ Infrastructure Development



R&D of H₂ Burner Systems

H₂ Power Generation

H₂ Co-generation Demonstration Project

Burning Simulation $(H_2 + CH_4)$

G20 Ministerial Meeting on Energy Transitions and Global Environment for Sustainable Growth

- Date: 15th, 16th June 2019
- Venue: Karuizawa, Japan
- Outcomes :
 - ✓ Communique
 - ✓ Action Plan
- Hydrogen
- √The importance of hydrogen was referred in the
 Communique and Action Plan for the first time in G20.
- √Hydrogen Report was released at G20 by IEA
- ✓One of the main themes of G20 Exhibition in Karuizawa was Hydrogen.
- ✓Over FCVs are used for transportation of Ministers in the venue
- ✓ Presentation and input about hydrogen by Hydrogen Council
- ✓ Japan, EU and US announced the Joint Statement of future cooperation on hydrogen and fuel cell technologies at the margin of G20.

Hydrogen Energy Ministerial Meeting

Date / Place: October 23rd, 2018 / Dai-ichi Hotel Tokyo

Organized by: METI, New Energy and Industrial Technology Development

Organization (NEDO)

300 people including representatives from 21 countries, Participants:

regions, international organizations, etc.*

*Japan, Australia, Austria, Brunei, Canada, China, France, Germany, Italy, the Netherlands, New Zealand, Norway, Poland, Qatar, South Africa, Korea, United Arab Emirates, United Kingdom, United States, European Commission, IEA Participants:

PROGRAM

- Ministerial Session
- Industry and International Organization Session
- Plenary Session: Potential of Hydrogen Energy for Energy Transition
- Session 1: Expansion of Hydrogen Use Mobility & H2 Infrastructure -
- Session 2: Upstream & Global Supply-chain for Global Hydrogen utilization
- Session 3: Renewable Energy Integration & Sectoral Integration

Tokyo Statement

We share the view that hydrogen can be a key contributor to the energy transitions underway to clean energy future and an important component of a broad-based, secure, and efficient energy portfolio. Also, we confirmed the value of collaborating on the following four agendas on "Tokyo Statement" to achieve a "Hydrogen Society".

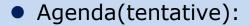
- ◆Harmonization of Regulation, Codes and Standards ◆Study and Evaluate Hydrogen's Potential
- ◆International Joint R&D emphasizing Safety

- ◆Communication, Education and Outreach

Hydrogen Energy Ministerial Meeting 2019

•Objective:

- ✓ Follow up "Tokyo Statement" to realize it
- ✓ Set "Global Hydrogen Target" to share global goal.


•Date: September 25th, 2019

•Venue: TOKYO, Japan

•Host: Ministry of Economy, Trade and Industry, Japan

Attendees: Ministers, Government officials, Private Company's

CEOs

AM: Ministerial Session

- ✓ Opening Remarks (Japan: Tokyo Statement, Global Hydrogen Target)
- ✓ Ministerial Discussion (Short Speech by Minister level)
- ✓ Updates from cooperating organization(IPHE, IEA, CEM/MI, HC, G20)
- ✓ Discussion (Other participant's)

PM: Work Shop with Industry and International Organization session

- ✓ Plenary
- ✓ Mobility WS
- ✓ Hydrogen Supply Chain WS
- ✓ Sector Integration WS

